We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Sulfur is in the Air: Cyanolichen Marriages and Pollution

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Cyanolichens are symbiotic organisms involving cyanobacteria and fungi (bipartite) or with the addition of an algal partner (tripartite). Cyanolichens are known for their heightened susceptibility to environmental pollution. We focus here on the impacts on cyanolichens due to rising air pollution; we are especially interested in the role of sulfur dioxide on cyanolichen biology. Cyanolichens due to air pollution including sulfur dioxide exposure, show symptomatic changes including degradation of chlorophyll, lipid membrane peroxidation, decrease in ATP production, changes in respiration rate, and alteration of endogenous auxins and ethylene production, although symptoms are known to vary with species and genotype. Sulfur dioxide has been shown to be damaging to photosynthesis but is relatively benign on nitrogen fixation which proposes as a hypothesis that the algal partner may be more in harm’s way than the cyanobiont. In fact, the Nostoc cyanobiont of sulfur dioxide-susceptible Lobaria pulmonaria carries a magnified set of sulfur (alkane sulfonate) metabolism genes capable of alkane sulfonate transport and assimilation, which were only unraveled by genome sequencing, a technology unavailable in the 1950–2000 epoch, where most physiology- based studies were performed. There is worldwide a growing corpus of evidence that sulfur has an important role to play in biological symbioses including rhizobia-legumes, mycorrhizae-roots and cyanobacteria-host plants. Furthermore, the fungal and algal partners of L. pulmonaria appear not to have the sulfonate transporter genes again providing the roles of ambient-sulfur (alkanesulfonate metabolism etc.) mediated functions primarily to the cyanobacterial partner. In conclusion, we have addressed here the role of the atmospheric pollutant sulfur dioxide to tripartite cyanolichen viability and suggest that the weaker link is likely to be the photosynthetic algal (chlorophyte) partner and not the nitrogen-fixing cyanobiont.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Ahmadjian V (1989) Studies on the isolation and synthesis of bionts of the cyanolichenPeltigera canina (Peltigeraceae). Plant Syst Evol 165(1–2):29–38

    Article  Google Scholar 

  • Backor M, Peksa O, Skaloud P, Backorova M (2010) Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Ecotoxicol Environ Saf 73(4):603–612. https://doi.org/10.1016/j.ecoenv.2009.11.002

    Article  Google Scholar 

  • Bargagli R, Mikhailova I (2002) Accumulation of inorganic contaminants. Monitoring with lichens—monitoring lichens. Springer, Dordrecht, pp 65–84

    Chapter  Google Scholar 

  • Bell JNB, Treshow M (eds) (2002) Air pollution and plant life. John Wiley Sons, Hoboken

  • Büdel B, Karsten U, Garcia-Pichel F (1997) Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112(2):165–172

    Article  Google Scholar 

  • Bychek-Guschina I, Kotlova E, Heipieper H (1999) Effects of sulfur dioxide on lichen lipids and fatty acids. Biochemistry-New York-English Translation of Biokhimiya 64(1):61–65

    Google Scholar 

  • Conti ME (2008) Lichens as bioindicators of air pollution. WIT transactions on state-of-the-art in science and engineering, biological monitoring: theory and applications. Bioindic Biomark Environ Quality Human Expo Assess 17:111−162

  • Cornejo C, Scheidegger C (2015) Multi-gene phylogeny of the genus Lobaria: Evidence of species-pair and allopatric cryptic speciation in East Asia. Am J Bot 102(12):2058–2073. https://doi.org/10.3732/ajb.1500207

    Article  Google Scholar 

  • Dahiya S, Anhäuser A, Farrow A, Thieriot H, Kumar A, Myllyvirta L (2020) Global SO2 emission hotspot database. Delhi: Center for Research on Energy and Clean Air Greenpeace India. 48 p

  • Dahlman L, Persson J, Palmqvist K, Näsholm T (2004) Organic and inorganic nitrogen uptake in lichens. Planta 219(3):459–467

    Article  Google Scholar 

  • Dal Forno M, Kaminsky L, Rosentreter R, McMullin RT, Aptroot A, Lücking R (2019) A first phylogenetic assessment of Dictyonema s. lat. in southeastern North America reveals three new basidiolichens, described in honor of James D. Lawrey. Lawrey Plant Fungal Syst 64:383–392

    Article  Google Scholar 

  • Dal Grande F, Widmer I, Beck A et al (2010) Microsatellite markers for Dictyochloropsis reticulata (Trebouxiophyceae), the symbiotic alga of the lichen Lobaria pulmonaria (L.). Conserv Genet 11:1147–1149. https://doi.org/10.1007/s10592-009-9904-2

    Article  Google Scholar 

  • Darnajoux R, Zhang X, McRose DL, Miadlikowska J, Lutzoni F, Kraepiel AM, Bellenger JP (2017) Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytol 213(2):680–689. https://doi.org/10.1111/nph.14166

    Article  Google Scholar 

  • Erokhina LG, Shatilovich AV, Kaminskaia OP, Gilichinskii DA (2002) The absorption and fluorescence spectra of the cyanobacterial phycobilins of cryptoendolithic lichens in the high-polar region of Antarctica. Mikrobiologiia 71(5):697–704

    Google Scholar 

  • Fedrowitz K, Kaasalainen U, Rikkinen J (2012) Geographic mosaic of symbiont selectivity in a genus of epiphytic cyanolichens. Ecol Evol 2(9):2291–2303. https://doi.org/10.1002/ece3.343

    Article  Google Scholar 

  • Gagunashvili AN, Andresson OS (2018) Distinctive characters of Nostoc genomes in cyanolichens. BMC Genomics 19(1):434. https://doi.org/10.1186/s12864-018-4743-5

    Article  Google Scholar 

  • Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:723. https://doi.org/10.3389/fpls.2014.00723

    Article  Google Scholar 

  • Gao F (2020) Iron-Sulfur cluster biogenesis and iron homeostasis in cyanobacteria. Front Microbiol 11:165. https://doi.org/10.3389/fmicb.2020.00165

    Article  Google Scholar 

  • Gauslaa Y, Coxson D (2011) Interspecific and intraspecific variations in waterstorage in epiphytic old forest foliose lichens. Botany 89:787–798

    Article  Google Scholar 

  • Gauslaa Y, Coxson DS, Solhaug KA (2012) The paradox of higher light tolerance during desiccation in rare old forest cyanolichens than in more widespread co-occurring chloro- and cephalolichens. New Phytol 195(4):812–822. https://doi.org/10.1111/j.1469-8137.2012.04221.x

    Article  Google Scholar 

  • Geiser LH, Neitlich PN (2007) Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environ Pollut 145(1):203–218

    Article  Google Scholar 

  • Geiser LH, Nelson PR, Jovan SE, Root HT, Clark CM (2019) Assessing ecological risks from atmospheric deposition of nitrogen and sulfur to US forests using epiphytic macrolichens. Diversity 11(6):87

    Article  Google Scholar 

  • Giordani P (2007) Is the diversity of epiphytic lichens a reliable indicator of air pollution? A case study from Italy. Environ Pollut 146(2):317–323. https://doi.org/10.1016/j.envpol.2006.03.030

    Article  Google Scholar 

  • Gries C (1996) Lichens as indicators of air pollution. In Lichen biology, Nash TH (ed) Cambridge University Press. Cambridge. pp 240–254

  • Grimm M, Grube M, Schiefelbein U, Zuhlke D, Bernhardt J, Riedel K (2021) The Lichens’ microbiota, still a mystery? Front Microbiol 12:623839. https://doi.org/10.3389/fmicb.2021.623839

    Article  Google Scholar 

  • Hallgren JE, Huss K (1975) Effects of SO2 on photosynthesis and nitrogen fixation. Physiol Plant 34(2):171–176

    Article  Google Scholar 

  • Hawksworth DL, Rose F (1970) Qualitative scale for estimating sulphur dioxide air pollution in Engand and Wales using epiphytic lichens. Nature 227(5254):145–148. https://doi.org/10.1038/227145a0

    Article  Google Scholar 

  • Hawksworth DL, Rose F (1979) Lichens as pollution monitors. Institute Biology’s Studies in Biology. London UK, p 66

  • Henskens FL, Green TG, Wilkins A (2012) Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Ann Bot 110(3):555–563. https://doi.org/10.1093/aob/mcs108

    Article  Google Scholar 

  • Hill DJ (1971) Exiperimental study of the effects of sulphite on lichens with reference to atmospheric pollution. New Phytol 70:831–836. https://doi.org/10.1111/j.1469-8137.1971.tb02583.x

    Article  Google Scholar 

  • Hill DJ (1974) Some effects of sulphite on photosynthesis in lichens. New Phytol 73:1193–1205. https://doi.org/10.1111/j.1469-8137.1974.tb02148.x

    Article  Google Scholar 

  • Hilmo O, Rocha L, Holien H, Gauslaa Y (2011) Establishment success of lichen diaspores in young and old boreal rainforests: a comparison between Lobaria pulmonaria and L scrobiculata. Lichenologist 43(3):241–255. https://doi.org/10.1017/S0024282910000794

    Article  Google Scholar 

  • Holt S, Kankipati H, De Graeve S, Van Zeebroeck G, Foulquie-Moreno MR, Lindgreen S, Thevelein JM (2017) Major sulfonate transporter Soa1 in Saccharomyces cerevisiae and considerable substrate diversity in its fungal family. Nat Commun 8:14247. https://doi.org/10.1038/ncomms14247

    Article  Google Scholar 

  • Hudek L, Premachandra D, Webster WA, Brau L (2016) Role of phosphate transport system component PstB1 in phosphate internalization by nostoc punctiforme. Appl Environ Microbiol 82(21):6344–6356. https://doi.org/10.1128/AEM.01336-16

    Article  Google Scholar 

  • Insarova I, Insarov GE, Semenov SM, Braakenhielm S, Hultengren S, Martinsson PO (1992) Lichen sensitivity and air pollution: a review of literature data. Swedish Environ Prot Agcy Rep 4007

  • Jeran Z, Mrak T, Jacimovic R, Batic F, Kastelec D, Mavsar R, Simoncic P (2007) Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests. Environ Pollut 146(2):324–331. https://doi.org/10.1016/j.envpol.2006.03.032

    Article  Google Scholar 

  • Koch NM, Matos P, Branquinho C, Pinho P, Lucheta F, de Azevedo Martins SM, Vargas VMF (2019) Selecting lichen functional traits as ecological indicators of the effects of urban environment. Sci Total Environ 654:705–713

    Article  Google Scholar 

  • Kytöviita MM, Crittenden P (1994) Effects of simulated acid rain on nitrogenase activity (acetylene reduction) in the lichen Stereocaulon paschale (L.) Hoffm., with special reference to nutritional aspects. New Phytol 128(2):263–271

    Article  Google Scholar 

  • Lange O, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71(1):104–110

    Article  Google Scholar 

  • Larsson P, Solhaug KA, Gauslaa Y (2012) Seasonal partitioning of growth into biomass and area expansion in a cephalolichen and a cyanolichen of the old forest genus Lobaria. New Phytol 194(4):991–1000. https://doi.org/10.1111/j.1469-8137.2012.04130.x

    Article  Google Scholar 

  • Loppi S, Corsini A (2003) Diversity of epiphytic lichens and metal contents of Parmelia caperata thalli as monitors of air pollution in the town of Pistoia (c Italy). Environ Monit Assess 86(3):289–301. https://doi.org/10.1023/a:1024017118462

    Article  Google Scholar 

  • Magain N, Miadlikowska J, Goffinet B, Serusiaux E, Lutzoni F (2017) Macroevolution of specificity in cyanolichens of the genus peltigera section polydactylon (Lecanoromycetes, Ascomycota). Syst Biol 66(1):74–99. https://doi.org/10.1093/sysbio/syw065

    Article  Google Scholar 

  • Marthinsen G, Rui S, Timdal E (2019) OLICH: A reference library of DNA barcodes for Nordic lichens. Biodivers Data J 7:e36252. https://doi.org/10.3897/BDJ.7.e36252

    Article  Google Scholar 

  • McMullin RT, Bennett LL, Bjorgan OJ, Bourque DA, Burke CJ, Clarke MA, Gutgesell MK, Krawiec PL, Malyon R, Mantione A (2016) Relationships between air pollution, population density, and lichen biodiversity in the Niagara Escarpment World Biosphere Reserve. Lichenologist 48(5):593–605

    Article  Google Scholar 

  • Meeks JC, Campbell EL, Summers ML, Wong FC (2002) Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 178(6):395–403. https://doi.org/10.1007/s00203-002-0476-5

    Article  Google Scholar 

  • Monaci F, Fantozzi F, Figueroa R, Parra O, Bargagli R (2012) Baseline element composition of foliose and fruticose lichens along the steep climatic gradient of SW Patagonia (Aisen Region, Chile). J Environ Monit 14(9):2309–2316. https://doi.org/10.1039/c2em30246b

    Article  Google Scholar 

  • Moncada B, Pérez-Pérez RE, Lücking R (2019) The lichenized genus Cora (Basidiomycota: Hygrophoraceae) in Mexico: high species richness, multiple colonization events, and high endemism. Plant and Fungal Systematics 64(2):393–411

    Article  Google Scholar 

  • Myllys L, Stenroos S, Thell A, Kuusinen M (2007) High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. New Phytol 173(3):621–629. https://doi.org/10.1111/j.1469-8137.2006.01944.x

    Article  Google Scholar 

  • Nash TH 3rd (1976) Lichens as indicators of air pollution. Naturwissenschaften 63(8):364–367. https://doi.org/10.1007/BF00607929

    Article  Google Scholar 

  • Nash III TH, Wirth V (1988) Lichens, bryophytes and air quality. Schweizerbart, Stuttgart

  • Nash TH (1996) Lichen biology. Cambridge University Press

    Google Scholar 

  • Nelson JM, Hauser DA, Gudino JA, Guadalupe YA, Meeks JC, Salazar Allen N, Villarreal JC, Li FW (2019) Complete genomes of symbiotic cyanobacteria clarify the evolution of vanadium-nitrogenase. Genome Biol Evol 11(7):1959–1964. https://doi.org/10.1093/gbe/evz137

    Article  Google Scholar 

  • Oliver M, Geiser L, Jovan S (2011) Canaries in a coal mine: using lichens to measure nitrogen pollution. Science Findings 131 Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station 5:131

  • Osyczka P, Kubiak D (2020) Data on epiphytic lichens and their host-trees in relation to non-forested area and natural deciduous lowland forest. Data Brief 31:105711. https://doi.org/10.1016/j.dib.2020.105711

    Article  Google Scholar 

  • Paoli L, Guttová A, Sorbo S, Grassi A, Lackovičová A, Basile A, Senko D, Loppi S (2016) Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): a comparison with green algal lichens. Biologia 71(3):272–280

    Article  Google Scholar 

  • Park CH, Kim KM, Elvebakk A, Kim OS, Jeong G, Hong SG (2015) Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol 62(2):196–205. https://doi.org/10.1111/jeu.12159

    Article  Google Scholar 

  • Park C, Shin B, Park W (2020) Protective role of bacterial alkanesulfonate monooxygenase under oxidative stress. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00692-20

    Article  Google Scholar 

  • Parrish D, Ryerson T, Mellqvist J, Johansson J, Fried A, Richter D, Walega J, Washenfelder Rd, De Gouw J, Peischl J (2012) Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmos Chem Phys 12(7):3273–3288

    Article  Google Scholar 

  • Perlmutter GB, Blank GB, Wentworth TR, Lowman MD, Neufeld HS, Plata ER (2018) Highway pollution effects on microhabitat community structure of corticolous lichens. The Bryologist 121(1):1–13

    Article  Google Scholar 

  • Ramakrishnan A (2006) Visible light induced catalytic sulfoxidation of alkanes [PhD Thesis] Institute for Inorganic Chemistry, Faculty of Science, Friedrich-Alexander University, Erlangen-Nuremberg (FAU)

  • Ran L, Larsson J, Vigil-Stenman T, Nylander JA, Ininbergs K, Zheng WW, Lapidus A, Lowry S, Haselkorn R, Bergman B (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE 5(7):e11486. https://doi.org/10.1371/journal.pone.0011486

    Article  Google Scholar 

  • Reichenbecher W, Murrell JC (1999) Linear alkanesulfonates as carbon and energy sources for gram-positive and gram-negative bacteria. Arch Microbiol 171(6):430–438. https://doi.org/10.1007/s002030050730

    Article  Google Scholar 

  • Richardson DH, Cameron RP (2004) Cyanolichens: their response to pollution and possible management strategies for their conservation in northeastern North America. Northeast Nat 11(1):1–22

    Article  Google Scholar 

  • Rikkinen J (2007) Relations between cyanobacterial symbionts in lichens and plants. Prokaryotic symbionts in plants. Springer, Heidelberg, pp 265–270

    Chapter  Google Scholar 

  • Rikkinen J (2013) Molecular studies on cyanobacterial diversity in lichen symbioses. MycoKeys 6:3–32

    Article  Google Scholar 

  • Rikkinen J (2017) Symbiotic cyanobacteria in lichens. In: Grube M, Seckbach J, Muggia L (eds) Algal and cyanobacteria symbioses, pp 147–167

  • Ryan BD, Lumbsch H, Messuti M, Printzen C, Śliwa L, Nash T, Diederich P, Gries C, Bungartz F (2004) Lichen flora of the greater Sonoran desert region. Lichens Unlimited 357

  • Shukla V, Upreti DK, Bajpai R (2014) Lichens to biomonitor the environment. Springer

    Book  Google Scholar 

  • Sigurbjornsdottir MA, Heiethmarsson S, Jonsdottir AR, Vilhelmsson O (2014) Novel bacteria associated with Arctic seashore lichens have potential roles in nutrient scavenging. Can J Microbiol 60(5):307–317. https://doi.org/10.1139/cjm-2013-0888

    Article  Google Scholar 

  • Sipman H (2009) Tropical urban lichens: observations from Singapore. Blumea-Biodiversity, Evolution and Biogeography of Plants 54(1–2):297–299

    Article  Google Scholar 

  • Sitaras IE, Siskos PA (2008) The role of primary and secondary air pollutants in atmospheric pollution: Athens urban area as a case study. Environ Chem Lett 6(2):59–69

    Article  Google Scholar 

  • Stuart RK, Pederson ERA, Weyman PD, Weber PK, Rassmussen U, Dupont CL (2020) Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism. ISME J 14(12):3068–3078. https://doi.org/10.1038/s41396-020-00738-4

    Article  Google Scholar 

  • Sudirman LI, Koesmaryono Y (2015) Air quality bioindicator using the population of epiphytic macrolichens in Bogor City. West Java HAYATI Journal of Biosciences 22(2):53–59

    Article  Google Scholar 

  • Vivas M, Sacristan M, Legaz ME, Vicente C (2010) The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens. Plant Biol (stuttg) 12(4):615–621. https://doi.org/10.1111/j.1438-8677.2009.00250.x

    Article  Google Scholar 

  • Ward PL (2009) Sulfur dioxide initiates global climate change in four ways. Thin Solid Films 517(11):3188–3203

    Article  Google Scholar 

  • Warshan D, Liaimer A, Pederson E, Kim SY, Shapiro N, Woyke T, Altermark B, Pawlowski K, Weyman PD, Dupont CL, Rasmussen U (2018) Genomic changes associated with the evolutionary transitions of nostoc to a plant symbiont. Mol Biol Evol 35(5):1160–1175. https://doi.org/10.1093/molbev/msy029

    Article  Google Scholar 

  • Wedin M, Maier S, Fernandez-Brime S, Cronholm B, Westberg M, Grube M (2016) Microbiome change by symbiotic invasion in lichens. Environ Microbiol 18(5):1428–1439. https://doi.org/10.1111/1462-2920.13032

    Article  Google Scholar 

  • Werth S, Scheidegger C (2012) Congruent genetic structure in the lichen-forming fungus Lobaria pulmonaria and its green-algal photobiont. Mol Plant Microbe Interact 25(2):220–230. https://doi.org/10.1094/MPMI-03-11-0081

    Article  Google Scholar 

  • Werth S, Gugerli F, Holderegger R, Wagner HH, Csencsics D, Scheidegger C (2007) Landscape-level gene flow in Lobaria pulmonaria, an epiphytic lichen. Mol Ecol 16(13):2807–2815. https://doi.org/10.1111/j.1365-294X.2007.03344.x

    Article  Google Scholar 

  • Wodzinski RS, Labeda DP, Alexander M (1978) Effects of low concentrations of bisulfite-sulfite and nitrite on microorganisms. Appl Environ Microbiol 35(4):718–723. https://doi.org/10.1128/aem.35.4.718-723.1978

    Article  Google Scholar 

  • Yazici K, Aslan A (2006) Distribution of epiphytic lichens and air pollution in the city of Trabzon. Turkey Bull Environ Contam Toxicol 77(6):838–845. https://doi.org/10.1007/s00128-006-1220-7

    Article  Google Scholar 

  • Zhang R, Ni S, Kennedy MA (2020) Crystal structure of Alr1298, a pentapeptide repeat protein from the cyanobacterium Nostoc sp PCC 7120, determined at 2.1 A resolution. Proteins 88(9):1143–1153. https://doi.org/10.1002/prot.25882

    Article  Google Scholar 

Download references

Funding

There is no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilantha Gunawardana.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts in interest.

Ethical Approval

This article does not contain any studies with human participants or animals, performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunawardana, D., Wanigatunge, R.P., Wewalwela, J.J. et al. Sulfur is in the Air: Cyanolichen Marriages and Pollution. Acta Biotheor 71, 14 (2023). https://doi.org/10.1007/s10441-023-09465-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10441-023-09465-7

Keywords

Navigation