Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Zinc Acetate in Organic Synthesis and Catalysis: A Review

Author(s): Mohammed Mujahid Alam, Ravi Varala* and Vittal Seema

Volume 21, Issue 5, 2024

Published on: 12 June, 2023

Page: [555 - 587] Pages: 33

DOI: 10.2174/1570193X20666230507213511

Price: $65

Abstract

Among the many zinc salts that can be found, zinc acetate is one of the readily available, affordable, low-hazardous Lewis acids. It can be referred to as a multifunctional catalyst due to its unique physical and chemical properties, which show that they are effective in enabling a variety of synthetic transformations in both organic synthesis and catalysis. This review included noteworthy innovations that have been created during the past two and half decades using zinc acetate as a catalyst or reagent.

Keywords: Zinc acetate (Zn(OAc)2), organic synthesis, catalysis, cyclization, miscellaneous reactions, materials.

« Previous
Graphical Abstract
[1]
Frassinetti, S.; Bronzetti, G.L.; Caltavuturo, L.; Cini, M.; Croce, C.D. The role of zinc in life: A review. J. Environ. Pathol. Toxicol. Oncol., 2006, 25(3), 597-610.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v25.i3.40] [PMID: 17073562]
[2]
Solomons, N.W. Update on zinc biology. Ann. Nutr. Metab., 2013, 62(Suppl. 1), 8-17.
[http://dx.doi.org/10.1159/000348547] [PMID: 23689109]
[3]
Maret, W. Zinc and zinc ions in biological systems. Encyclopedia of Metalloproteins; Springer: New York, NY, 2013.
[http://dx.doi.org/10.1007/978-1-4614-1533-6_185]
[4]
Jurowski, K.; Szewczyk, B.; Nowak, G.; Piekoszewski, W. Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. J. Biol. Inorg. Chem., 2014, 19(7), 1069-1079.
[http://dx.doi.org/10.1007/s00775-014-1139-0] [PMID: 24748223]
[5]
Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The physiological, biochemical, and molecular roles of Zinc transporters in Zinc homeostasis and metabolism. Physiol. Rev., 2015, 95(3), 749-784.
[http://dx.doi.org/10.1152/physrev.00035.2014] [PMID: 26084690]
[6]
Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr., 2013, 4(1), 82-91.
[http://dx.doi.org/10.3945/an.112.003038] [PMID: 23319127]
[7]
Enthaler, S.; Wu, X.F. Zinc Catalysis: Applications in organic synthesis; Wiley, 2015.
[http://dx.doi.org/10.1002/9783527675944]
[8]
Wu, X.F.; Neumann, H. Zinc-Catalyzed Organic Synthesis: C-C, C-N, C-O bond formation reactions. Adv. Synth. Catal., 2012, 354(17), 3141-3160.
[http://dx.doi.org/10.1002/adsc.201200547]
[9]
Knochel, P.; Schade, M.A.; Bernhardt, S.; Manolikakes, G.; Metzger, A.; Piller, F.M.; Rohbogner, C.J.; Mosrin, M. Functionalization of heterocyclic compounds using polyfunctional magnesium and zinc reagents. Beilstein J. Org. Chem., 2011, 7(1), 1261-1277.
[http://dx.doi.org/10.3762/bjoc.7.147] [PMID: 21977211]
[10]
Wu, X.F. Non-redox-metal-catalyzed redox reactions: zinc catalysts. Chem. Asian J., 2012, 7(11), 2502-2509.
[http://dx.doi.org/10.1002/asia.201200596] [PMID: 22865409]
[11]
Enthaler, S. Rise of the zinc age in homogeneous catalysis? ACS Catal., 2013, 3(2), 150-158.
[http://dx.doi.org/10.1021/cs300685q]
[12]
Shamna, S.; Afsina, C.M.A.; Philip, R.M.; Anilkumar, G. Recent advances and prospects in the Zn-catalysed Mannich reaction. RSC Advances, 2021, 11(16), 9098-9111.
[http://dx.doi.org/10.1039/D0RA10772G] [PMID: 35423453]
[13]
Pellissier, H. Asymmetric zinc catalysis in green one-pot processes. Curr. Org. Chem., 2021, 25(8), 857-875.
[http://dx.doi.org/10.2174/1385272825666210216123607]
[14]
Thankachan, A.P.; Asha, S.; Sindhu, K.S.; Anilkumar, G. An overview of Zn-catalyzed enantioselective aldol type C–C bond formation. RSC Advances, 2015, 5(76), 62179-62193.
[http://dx.doi.org/10.1039/C5RA10102F]
[15]
Rohit, K.R.; Ujwaldev, S.M.; Krishnan, K.K.; Anilkumar, G. Recent developments and perspectives in the zinc-catalyzed Michael addition. Asian J. Org. Chem., 2018, 7(1), 85-102.
[http://dx.doi.org/10.1002/ajoc.201700491]
[16]
Ghouse, S.; Sreenivasulu, C.; Kishore, D.R.; Satyanarayana, G. Recent developments by zinc based reagents/catalysts promoted organic transformations. Tetrahedron, 2022, 105, 132580.
[http://dx.doi.org/10.1016/j.tet.2021.132580]
[17]
Wagenknecht, O.F.; Juza, R. Zinc AcetateHandbook of Preparative Inorganic Chemistry; Brauer, G. Academic Press: NY, 1963.
[18]
Clegg, W.; Little, I.R.; Straughan, B.P. Monoclinic anhydrous zinc(II) acetate. Acta Crystallogr. C, 1986, 42(12), 1701-1703.
[http://dx.doi.org/10.1107/S010827018609087X]
[19]
He, H. A new monoclinic polymorph of anhydrous zinc acetate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2006, 62(12), m3291-m3292.
[http://dx.doi.org/10.1107/S1600536806046678]
[20]
Capilla, A.V.; Aranda, R.A. Anhydrous Zinc(II) Acetate (CH3-COO)2Zn. Cryst. Struct. Commun., 1979, 8, 795-797.
[21]
van Niekerk, J.N.; Schoening, F.R.L.; Talbot, J.H. The crystal structure of zinc acetate dihydrate, Zn(CH3COO)2.2H2O. Acta Crystallogr., 1953, 6(8), 720-723.
[http://dx.doi.org/10.1107/S0365110X53002015]
[22]
Ishioka, T.; Murata, A.; Kitagawa, Y.; Nakamura, K.T. Zinc(II) Acetate Dihydrate. Acta Crystallogr. C, 1997, 53(8), 1029-1031.
[http://dx.doi.org/10.1107/S0108270197004484]
[23]
Adapa, S.R.; Varala, R.; Alam, M.M. Chemoselective Michael type addition of aliphatic amines to α,ß-ethylenic compounds using bismuth triflate catalyst. Synlett, 2003, 720-722(5), 0720-0722.
[http://dx.doi.org/10.1055/s-2003-38345]
[24]
Varala, R.; Sreelatha, N.; Adapa, S.R. Ceric ammonium nitrate (CAN) catalyzed aza-Michael addition of aliphatic amines to α,ß-ethylenic compounds in water. Synlett, 2006, 1549-1555.
[http://dx.doi.org/10.1055/s-2006-941588]
[25]
Bartoli, G.; Bartolacci, M.; Bosco, M.; Foglia, G.; Giuliani, A.; Marcantoni, E.; Sambri, L.; Torregiani, E. The Michael addition of indoles to α,β-unsaturated ketones catalyzed by CeCl3.7H2O-NaI combination supported on silica gel. J. Org. Chem., 2003, 68(11), 4594-4597.
[http://dx.doi.org/10.1021/jo034303y] [PMID: 12762781]
[26]
Ji, X.; Tong, H.; Yuan, Y. Facile and efficient Michael addition of indole to nitroolefins catalyzed by Zn(OAc)2•2H2O. Synth. Commun., 2011, 41(3), 372-379.
[http://dx.doi.org/10.1080/00397910903576610]
[27]
Varala, R.; Nuvula, S.; Adapa, S.R. Efficient synthetic method for β-enamino esters catalyzed by Yb(OTf)3 under solvent-free conditions. Aust. J. Chem., 2006, 59(12), 921-924.
[http://dx.doi.org/10.1071/CH06239]
[28]
Nair, V.; Biju, A.T.; Mathew, S.C.; Babu, B.P. Carbon-nitrogen bond-forming reactions of dialkyl azodicarboxylate: A promising synthetic strategy. Chem. Asian J., 2008, 3(5), 810-820.
[http://dx.doi.org/10.1002/asia.200700341] [PMID: 18412188]
[29]
Yuancheng Qin, ; Dan Zhou, ; Mingjun Li, Zinc acetate as a catalyst for the hydroacylation reaction of azodicarboxylates with aldehydes. Lett. Org. Chem., 2012, 9(4), 267-272.
[http://dx.doi.org/10.2174/157017812800233741]
[30]
Alam, M.M.; Varala, R.; Adapa, S.R. Conjugate addition of indoles and thiols with electron-deficient olefins catalyzed by Bi(OTf)3. Tetrahedron Lett., 2003, 44(27), 5115-5119.
[http://dx.doi.org/10.1016/S0040-4039(03)01089-X]
[31]
Chun, S.; Chung, J.; Park, J.E.; Chung, Y.K. Hydrothiolation of alkenes and alkynes catalyzed by 3,4-dimethyl-5-vinylthiazolium iodide and poly(3,4-dimethyl-5-vinylthiazolium) iodide. ChemCatChem, 2016, 8(15), 2476-2481.
[http://dx.doi.org/10.1002/cctc.201600363]
[32]
Taniguchi, N. Zinc-catalyzed regioselective addition of alkyl thiols to alkenes via anion or radical reactions. ARKIVOC, 2021, 2021(3), 125-137.
[http://dx.doi.org/10.24820/ark.5550190.p011.447]
[33]
Ravi, V.; Ramu, E.; Vijay kumar, P.; Srinivas rao, A. One-pot reduction of imines generated in situ from aldehydes and amines by the NaBH 4-InCl3 system. Chin. J. Chem., 2006, 24(6), 807-810.
[http://dx.doi.org/10.1002/cjoc.200690153]
[34]
Nishiyama, H.; Inagaki, T.; Yamada, Y.; Phong, L.T.; Furuta, A.; Ito, J. Catalytic hydrosilylation of carbonyl compounds with Zinc(II) Acetate: Asymmetric induction collaborated with N2S2 ligands catalytic hydrosilylation of carbonyl compounds. Synlett, 2009, 2009(2), 253-256.
[http://dx.doi.org/10.1055/s-0028-1087663]
[35]
Lamm, V.; Pan, X.; Taniguchi, T.; Curran, D.P. Reductions of aldehydes and ketones with a readily available N-heterocyclic carbene borane and acetic acid. Beilstein J. Org. Chem., 2013, 9, 675-680.
[http://dx.doi.org/10.3762/bjoc.9.76] [PMID: 23616812]
[36]
Ozasa, H.; Kondo, K.; Aoyama, T. The remarkable solvent effect on Zn(OAc)2-catalyzed hydrosilylation of ketones. Chem. Pharm. Bull., 2010, 58(7), 989-990.
[http://dx.doi.org/10.1248/cpb.58.989] [PMID: 20606354]
[37]
Cabrero-Antonino, J.R.; Adam, R.; Papa, V.; Beller, M. Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nat. Commun., 2020, 11(1), 3893-3910.
[http://dx.doi.org/10.1038/s41467-020-17588-5] [PMID: 32753681]
[38]
Das, S.; Addis, D.; Zhou, S.; Junge, K.; Beller, M. Zinc-catalyzed reduction of amides: Unprecedented selectivity and functional group tolerance. J. Am. Chem. Soc., 2010, 132(6), 1770-1771.
[http://dx.doi.org/10.1021/ja910083q] [PMID: 20104844]
[39]
Ahn, C.; Campbell, R.F.; Feldman, K.S. Zinc Acetate as a catalyst for di- and tri imide formation from 1,8-naphthalic anhydride and aromatic polyamides. Bull. Korean Chem. Soc., 1997, 18(4), 441-442.
[40]
Vohra, R.K.; Renaud, J.L.; Bruneau, C. Efficient synthesis of β-aminoacrylates and β-enaminones catalyzed by Zn(OAc)2·2H2O. Collect. Czech. Chem. Commun., 2005, 70(11), 1943-1952.
[http://dx.doi.org/10.1135/cccc20051943]
[41]
Deshmukh, M.B.; Patil, S.S.; Jadhav, S.D.; Pawar, P.B. Green approach for Knoevenagel condensation of aromatic aldehydes with active methylene group. Synth. Commun., 2012, 42(8), 1177-1183.
[http://dx.doi.org/10.1080/00397911.2010.537423]
[42]
Narayana, V.R.; Pudukulathan, Z.; Varala, R. SO42-/SnO2-Catalyzed efficient one-pot synthesis of 7,8-dihydro-2H-chromen-5-ones by formal [3+3] cycloaddition and 1,8-dioxo-octahydroxanthenes via a Knoevenagel condensation. Org. Commun, 2013, 6(3), 110-119.
[43]
Liu, X.W.; Jiang, H.; Gong, H. Knoevenagel condensation catalyzed by Zinc Acetate under solvent free condition at room temperature. Youji Huaxue, 2007, 27(1), 131-133.
[44]
Tian, Q.; Luo, W.; Gan, Z.; Li, D.; Dai, Z.; Wang, H.; Wang, X.; Yuan, J. Eco-friendly syntheses of 2-substituted benzoxazoles and 2-substituted benzothiazoles from 2-aminophenols, 2-aminothiophenols and DMF derivatives in the presence of imidazolium chloride. Molecules, 2019, 24(1), 174-185.
[http://dx.doi.org/10.3390/molecules24010174] [PMID: 30621218]
[45]
Madhusudana Reddy, M.B.; Nizam, A.; Pasha, M.A. Zn(OAc)2·2H2O-catalyzed, simple, and clean procedure for the synthesis of 2-substituted benzoxazoles using a grindstone method. Synth. Commun., 2011, 41(12), 1838-1842.
[http://dx.doi.org/10.1080/00397911.2010.493260]
[46]
Amira, A.; Aouf, Z.; K’tir, H.; Chemam, Y.; Ghodbane, R.; Zerrouki, R.; Aouf, N.E. Recent advances in the synthesis of α-aminophosphonates: A review. ChemistrySelect, 2021, 6(24), 6137-6149.
[http://dx.doi.org/10.1002/slct.202101360]
[47]
Arigala, U.R.S.; Matcha, C.; Yoon, K.R. Zn(OAc)2•2H2O-catalyzed synthesis of α-aminophosphonates under neat reaction. Heteroatom Chem., 2012, 23(2), 160-165.
[http://dx.doi.org/10.1002/hc.20765]
[48]
Musa, M.; Cooperwood, J.; Khan, M.O. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[49]
Patil, V.D.; Patil, K.P.; Sutar, N.R.; Gidh, P.V. Efficient synthesis of biscoumarins using zinc acetate as a catalyst in aqueous media. Chem. Int., 2017, 3(3), 240-243.
[50]
Adapa, S.R.; Varala, R.; Alam, M.M. Bismuth triflate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones: An improved protocol for the Biginelli reaction. Synlett, 2002, 67-70(1), 0067-0070.
[http://dx.doi.org/10.1055/s-2003-36216]
[51]
Bonkuri, P.K.; Jeripothula, M. Zinc(II)Acetate catalyzed synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J. Chem. Pharm. Res., 2018, 10(5), 132-136.
[52]
Varala, R.; Pisal, P.M.; Atkore, S.T.; Kamble, V.T. Zirconium tetrachloride catalyzed one-pot highly efficient green synthesis of functionalized piperidines under visible light. Int. J. Green Chem., 2020, 6(1), 36-43.
[http://dx.doi.org/10.37628/ijgc.v6i1.918]
[53]
Mohamadpour, F.; Lashkari, M. One pot, five-component synthesis of functionalized piperidines using Zn(OAc)2.2H2O as a highly efficient catalyst. J. Appl. Chem. Res., 2018, 12(2), 92-102.
[54]
Olyaei, A.; Sadeghpour, M. Recent advances in the synthesis and synthetic applications of Betti base (aminoalkylnaphthol) and bis-Betti base derivatives. RSC Advances, 2019, 9(32), 18467-18497.
[http://dx.doi.org/10.1039/C9RA02813G] [PMID: 35515249]
[55]
Alam, M.M.; Bollikolla, H.B.; Varala, R. Zn(OAc)2•2H2O-catalyzed Betti base synthesis under solvent-free conditions. Lett. Org. Chem., 2022, 19(1), 14-18.
[http://dx.doi.org/10.2174/1570178618666210616155257]
[56]
Narayana, V.R.; Pudukulathan, Z.; Varala, R. SO42-/SnO2-Catalyzed C3-alkylation of 4-hydroxycoumarin with secondary benzyl alcohols and o-alkylation with o-acetyl compounds. Int. J. Org. Chem. (Irvine), 2012, 2(3A), 287-294.
[http://dx.doi.org/10.4236/ijoc.2012.223039]
[57]
Bandaru, S.K.; Risi, M.C. Zn(OAc)2.2H2O-catalyzed C3-alkylation and o-alkylation of 4-hydroxycoumarin derivatives. Caribbean J. Sci. Tech., 2022, 10(2), 10-16.
[http://dx.doi.org/10.55434/CBI.2022.20102]
[58]
Zhang, L.; Peng, X.M.; Damu, G.L.V.; Geng, R.X.; Zhou, C.H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev., 2014, 34(2), 340-437.
[http://dx.doi.org/10.1002/med.21290] [PMID: 23740514]
[59]
Chinta, B.; Satyadev, T.N.V.S.S.; Adilakshmi, G.V. Zn(OAc)2•2H2O-catalyzed one-pot synthesis of divergently substituted Imidazoles. Curr. Chem. Lett., 2023, 12(1), 175-184.
[http://dx.doi.org/10.5267/j.ccl.2022.8.007]
[60]
Ahmed Elkanzi, N.A. Synthesis and biological activities of some pyrimidine derivatives: A review. Orient. J. Chem., 2020, 36(6), 1001-1015.
[http://dx.doi.org/10.13005/ojc/360602]
[61]
Mohamadpour, F. An eco-safe and solvent-free approach for clean and one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-one/thione derivatives using Zn(OAc)2.2H2O as an environmental friendly, readily and efficient catalyst. Indian J. Chem. Sect. B: Org. Chem. Incl. Med. Chem., 2020, 59B, 1030-1038.
[62]
Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev., 2017, 117(24), 14091-14200.
[http://dx.doi.org/10.1021/acs.chemrev.7b00343] [PMID: 29166000]
[63]
Ramu, E.; Varala, R.; Sreelatha, N.; Adapa, S.R. Zn(OAc)2·2H2O: A versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett., 2007, 48(40), 7184-7190.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.196]
[64]
Varala, R.; Nasreen, A.; Enugala, R.; Adapa, S.R. l-Proline catalyzed selective synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles. Tetrahedron Lett., 2007, 48(1), 69-72.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.010]
[65]
Patil, V.D.; Patil, J.; Rege, P.; Dere, G. A mild and efficient synthesis of Benzimidazole by using lead peroxide under solvent free condition. Synth. Commun., 2010, 41(1), 58-62.
[http://dx.doi.org/10.1080/00397910903531789]
[66]
Rami Reddy, V.V.; Saritha, B.; Ramu, R.; Varala, R.; Jayashree, A. Zn(OAc)2⋅2H2O-catalyzed one-pot efficient synthesis of amino nitriles. Asian J. Chem., 2014, 26(21), 7439-7442.
[http://dx.doi.org/10.14233/ajchem.2014.17180]
[67]
Mansoor, S.S.; Aswin, K.; Logaiya, K.; Sudhan, S.P.N. An efficient synthesis of β-amino ketone compounds through one-pot three-component Mannich-type reactions using bismuth nitrate as catalyst. J. Saudi Chem. Soc., 2015, 19(4), 379-386.
[http://dx.doi.org/10.1016/j.jscs.2012.04.008]
[68]
Bonkuri, P.K.; Jeripothula, M. Zinc acetate catalysed Mannich reaction: An efficient procedure for the synthesis of β-amino carbonyl compounds. JETIR, 2020, 7(1), 524-531.
[69]
Tzouras, N.V.; Neofotistos, S.P.; Vougioukalakis, G.C. Zn-catalyzed multicomponent KA2 coupling: One-pot assembly of propargylamines bearing tetrasubstituted carbon centers. ACS Omega, 2019, 4(6), 10279-10292.
[http://dx.doi.org/10.1021/acsomega.9b01387] [PMID: 31460120]
[70]
Bhanage, B.; Nale, D. N-substituted formamides as C1-sources for the synthesis of benzimidazole and benzothiazole derivatives by using zinc catalysts. Synlett, 2015, 26(20), 2835-2842.
[http://dx.doi.org/10.1055/s-0035-1560319]
[71]
Brown, F.C. 4-Thiazolidinones. Chem. Rev., 1961, 61(5), 463-521.
[http://dx.doi.org/10.1021/cr60213a002]
[72]
Xing, X.; Fan, K.; Pang, H.; Wu, Y.; Yang, J.; Shi, W.; Xie, Z.; Hui, Y. One-pot synthesis of 4-thiazolidinone derivatives catalyzed by zinc acetate-Schiff base complex immobilized on mesoporous molecular sieve MCM-41. Youji Huaxue, 2016, 36(8), 1942-1947.
[http://dx.doi.org/10.6023/cjoc201601014]
[73]
Varala, R.; Bollikolla, H.B.; Kurmarayuni, C.M. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-A review. Curr. Org. Synth., 2021, 18(2), 101-124.
[http://dx.doi.org/10.2174/18756271MTA54OTEc0] [PMID: 32928090]
[74]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[75]
Morozova, M.A.; Yusubov, M.S.; Kratochvil, B.; Eigner, V.; Bondarev, A.A.; Yoshimura, A.; Saito, A.; Zhdankin, V.V.; Trusova, M.E.; Postnikov, P.S. Regioselective Zn(OAc)2-catalyzed azide–alkyne cycloaddition in water: The green click-chemistry. Org. Chem. Front., 2017, 4(6), 978-985.
[http://dx.doi.org/10.1039/C6QO00787B]
[76]
Meng, X.; Xu, X.; Gao, T.; Chen, B. Zn/C-Catalyzed cycloaddition of azides and aryl alkynes. Eur. J. Org. Chem., 2010, 2010(28), 5409-5414.
[http://dx.doi.org/10.1002/ejoc.201000610]
[77]
Ravasco, J.M.J.M.; Faustino, H.; Trindade, A.; Gois, P.M.P. Bioconjugation with maleimides: A useful tool for chemical biology. Chemistry, 2019, 25(1), 43-59.
[http://dx.doi.org/10.1002/chem.201803174] [PMID: 30095185]
[78]
Ford, A.; Miel, H.; Ring, A.; Slattery, C.N.; Maguire, A.R.; McKervey, M.A. Modern organic synthesis with α-diazocarbonyl compounds. Chem. Rev., 2015, 115(18), 9981-10080.
[http://dx.doi.org/10.1021/acs.chemrev.5b00121] [PMID: 26284754]
[79]
Liang, Y.X.; Meng, X.H.; Yang, M.; Mehfooz, H.; Zhao, Y.L. Zn(OAc) 2 -catalyzed tandem cyclization of isocyanides, α-diazoketones, and anhydrides: A general route to polysubstituted maleimides. Chem. Commun. (Camb.), 2019, 55(83), 12519-12522.
[http://dx.doi.org/10.1039/C9CC05802H] [PMID: 31576845]
[80]
Łowicki, D.; Bezłada, A.; Mlynarski, J. Asymmetric hydrosilylation of ketones catalyzed by zinc acetate with hindered Pybox ligands. Adv. Synth. Catal., 2014, 356(2-3), 591-595.
[http://dx.doi.org/10.1002/adsc.201300682]
[81]
Sakai, T.; Hirashima, S.; Nakashima, K.; Maeda, C.; Yoshida, A.; Koseki, Y.; Miura, T. Asymmetric chlorination of β-keto esters using diaminomethylenemalononitrile organocatalyst. Chem. Pharm. Bull., 2016, 64(12), 1781-1784.
[http://dx.doi.org/10.1248/cpb.c16-00722]
[82]
Ma, J.; Suzuki, T.; Kuwano, S.; Arai, T. Catalytic asymmetric chlorination of β-ketoesters using N-PFB-PyBidine-Zn(OAc)2. Catalysts, 2020, 10(10), 1177-1185.
[http://dx.doi.org/10.3390/catal10101177]
[83]
Isoda, M.; Sato, K.; Tokura, Y.; Tarui, A.; Omote, M.; Ando, A. Asymmetric reductive aldol-type reaction with carbonyl compounds using dialkyl tartrate as a chiral ligand. Chem. Pharm. Bull. (Tokyo), 2014, 62(10), 956-961.
[http://dx.doi.org/10.1248/cpb.c14-00223] [PMID: 25273054]
[84]
Węglarz, I.; Szewczyk, M.; Mlynarski, J. Zinc acetate catalyzed enantioselective reductive Aldol reaction of ketones. Adv. Synth. Catal., 2020, 362(7), 1532-1536.
[http://dx.doi.org/10.1002/adsc.201901457]
[85]
Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed., 2007, 46(46), 8748-8758.
[http://dx.doi.org/10.1002/anie.200701342] [PMID: 17943924]
[86]
Tang, G.; Akompong, S.K.; Gao, L.; Zeng, C.; Cong, H.; Yang, M.; Ye, L.; Liu, Y. Stereoselective synthesis of 3,3′-pyrrolidinyl-spirooxindoles via the Zn(OAc)2-mediated asymmetric Mannich-type reaction. Tetrahedron Lett., 2021, 67, 152819.
[http://dx.doi.org/10.1016/j.tetlet.2020.152819]
[87]
Karak, M.; Joh, Y.; Suenaga, M.; Oishi, T.; Torikai, K. Suenag,a M.; Oishi, T.; Torikai, K. 1,2-trans Glycosylation via neighboring group participation of 2-o-alkoxymethyl groups: Application to one-pot oligosaccharide synthesis. Org. Lett., 2019, 21(4), 1221-1225.
[http://dx.doi.org/10.1021/acs.orglett.9b00220] [PMID: 30693782]
[88]
Babu Tatina, M.; Ali, M.S.; Ramesh, P.I.; Ghosh, S. Zinc acetate catalyzed stereoselective 1,2-trans-glycosylation using glycosyl chlorides. SynOpen, 2022, 6(4), 219-226.
[http://dx.doi.org/10.1055/a-1941-3801]
[89]
Gowda, R.R.; Chakraborty, D. Zinc acetate as a catalyst for the bulk ring opening polymerization of cyclic esters and lactide. J. Mol. Catal. Chem., 2010, 333(1-2), 167-172.
[http://dx.doi.org/10.1016/j.molcata.2010.10.013]
[90]
Deming, T.J. Facile synthesis of block copolypeptides of defined architecture. Nature, 1997, 390(6658), 386-389.
[http://dx.doi.org/10.1038/37084] [PMID: 9389476]
[91]
Kamber, N.E.; Jeong, W.; Waymouth, R.M.; Pratt, R.C.; Lohmeijer, B.G.G.; Hedrick, J.L. Organocatalytic ring-opening polymerization. Chem. Rev., 2007, 107(12), 5813-5840.
[http://dx.doi.org/10.1021/cr068415b] [PMID: 17988157]
[92]
Bourissou, D.; Moebs-Sanchez, S.; Martín-Vaca, B. Recent advances in the controlled preparation of poly(α-hydroxy acids): Metal-free catalysts and new monomers. C. R. Chim., 2007, 10(9), 775-794.
[http://dx.doi.org/10.1016/j.crci.2007.05.004]
[93]
Dove, A.P. Organic catalysis for ring-opening polymerization. ACS Macro Lett., 2012, 1(12), 1409-1412.
[http://dx.doi.org/10.1021/mz3005956] [PMID: 35607116]
[94]
Nie, Y.; Zhi, X.; Du, H.; Yang, J. Zn(OAc)2-catalyzing ring-opening polymerization of N-carboxyanhydrides for the synthesis of well-defined polypeptides. Molecules, 2018, 23(4), 760-772.
[http://dx.doi.org/10.3390/molecules23040760] [PMID: 29587473]
[95]
Benamara, N.; Merabet-Khelassi, M.; Aribi-Zouioueche, L.; Riant, O. CAL-B-mediated efficient synthesis of a set of valuable amides by direct amidation of phenoxy- and aryl-propionic acids. Chem. Pap., 2021, 75(8), 4045-4053.
[http://dx.doi.org/10.1007/s11696-021-01636-5]
[96]
Brahmachari, G.; Laskar, S.; Sarkar, S. Metal acetate/metal oxide in acetic acid: An efficient reagent for the chemoselective N-acetylation of amines under green conditions. J. Chem. Res., 2010, 34(5), 288-295.
[http://dx.doi.org/10.3184/030823410X12746305905926]
[97]
Brahmachari, G.; Laskar, S.; Sarkar, S. A green approach to chemoselective N-acetylation of amines using catalytic amount of zinc acetate in acetic acid under microwave irradiation. Indian J. Chem., 2010, 49B, 1274-1281.
[98]
Kaya, E.; Sonmez, F.; Kucukislamoglu, M.; Nebioglu, M. Selective anomeric deacetylation using zinc acetate as catalyst. Chem. Pap., 2012, 66(4), 312-315.
[http://dx.doi.org/10.2478/s11696-012-0143-5]
[99]
Baba, T.; Kobayashi, A.; Yamauchi, T.; Tanaka, H.; Aso, S.; Inomata, M.; Kawanami, Y. Catalytic methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate. Catal. Lett., 2002, 82(3/4), 193-197.
[http://dx.doi.org/10.1023/A:1020566928295]
[100]
Zhao, X.; Zhang, Y.; Wang, Y. Synthesis of propylene carbonate from urea and 1,2-propylene glycol over a zinc acetate catalyst. Ind. Eng. Chem. Res., 2004, 43(15), 4038-4042.
[http://dx.doi.org/10.1021/ie049948i]
[101]
Zhao, X.; Sun, N.; Wang, S.; Li, F.; Wang, Y. Synthesis of propylene carbonate from carbon dioxide and 1,2-propylene glycol over zinc acetate catalyst. Ind. Eng. Chem. Res., 2008, 47(5), 1365-1369.
[http://dx.doi.org/10.1021/ie070789n]
[102]
Baba, T.; Kobayashi, A.; Kawanami, Y.; Inazu, K.; Ishikawa, A.; Echizenn, T.; Murai, K.; Aso, S.; Inomata, M. Characteristics of methoxycarbonylation of aromatic diamine with dimethyl carbonate to dicarbamate using a zinc acetate catalyst. Green Chem., 2005, 7(3), 159-165.
[http://dx.doi.org/10.1039/b413334j]
[103]
Reixach, E.; Bonet, N.; Rius-Ruiz, F.X.; Wershofen, S.; Vidal-Ferran, A. Zinc acetates as efficient catalysts for the synthesis of bis-isocyanate precursors. Ind. Eng. Chem. Res., 2010, 49(14), 6362-6366.
[http://dx.doi.org/10.1021/ie100319n]
[104]
Li, F.; Li, W.; Li, J.; Xue, W.; Wang, Y.; Zhao, X. Investigation of supported Zn(OAc)2 catalyst and its stability in N-phenyl carbamate synthesis. Appl. Catal., A, 2014, 475, 355-362.
[http://dx.doi.org/10.1016/j.apcata.2014.01.008]
[105]
Peng, X.; Wang, Z.; Li, H.; Xue, W.; Li, F.; Wang, Y. Preparation of Zn(OAc)2/SiO2 catalyst with better stability prepared by solvothermal impregnation method and its application in methyl N-phenyl carbamate. Chem. Ind. Eng. Prog., 2019, 38(3), 1396-1402.
[http://dx.doi.org/10.16085/j.issn.1000-6613.2018-0408]
[106]
Song, X.; Bian, Z.; Hui, Y.; Wang, H.; Liu, F.; Yu, S. Zn-Acetate-Containing ionic liquid as highly active catalyst for fast and mild methanolysis of Poly(lactic acid). Polym. Degrad. Stabil., 2019, 168, 108937.
[http://dx.doi.org/10.1016/j.polymdegradstab.2019.108937]
[107]
Cornelissen, A.E.; Valstar, J.M.; van den Berg, P.J.; Janssen, F.J. Kinetics of the vinyl acetate synthesis from acetylene and acetic acid with a zinc acetate catalyst. Recl. Trav. Chim. Pays Bas, 1975, 94(7), 156-163.
[http://dx.doi.org/10.1002/recl.19750940705]
[108]
Feng, L. R.; Zhang, R.W.; Qiu, F.L.; Wang, Q.Q. Catalyst used for synthesis of vinyl acetate and its prepn. method. CN1903435A, 2007.
[109]
Hou, C.Y.; Feng, L.R.; Qiu, F.L. Highly active catalyst for vinyl acetate synthesis by modified activated carbon. Chin. Chem. Lett., 2009, 20(7), 865-868.
[http://dx.doi.org/10.1016/j.cclet.2009.01.027]
[110]
Bong, H.K.; Binh, H.H.; Kurlyandskaya, I.I.; Nyrkova, A.N.; Yamandii, D.I.; Temkin, O.N. Regularities of adsorption of zinc acetate from aqueous solutions onto the surface of modified activated carbons. Russ. J. Appl. Chem., 2013, 86(11), 1691-1701.
[http://dx.doi.org/10.1134/S1070427213110104]
[111]
Yan, F.W.; Guo, C.Y.; Yan, F.; Li, F.B.; Qian, Q.L.; Yuan, G.Q. Vinyl acetate formation in the reaction of acetylene with acetic acid catalyzed by zinc acetate supported on porous carbon spheres. Russ. J. Phys. Chem. A. Focus Chem., 2010, 84(5), 796-801.
[http://dx.doi.org/10.1134/S0036024410050158]
[112]
Hyu Bin’, H.; Abanto-Chavez, H.J.; Kozhemyakina, I.A.; Kim Bong, H.; Temkin, O.N. Adsorption of Zn(OAc)2 from aqueous solutions on the surface of activated carbons modified with acetic acid. Russ. J. Appl. Chem., 2003, 76(9), 1418-1422.
[http://dx.doi.org/10.1023/B:RJAC.0000012660.74112.e2]
[113]
Xu, H.; Yu, T.; Li, M. Zinc acetate immobilized on mesoporous materials by acetate ionic liquids as catalysts for vinyl acetate synthesis. J. Chem., 2015, 2015, 1-5.
[http://dx.doi.org/10.1155/2015/238287]
[114]
Wu, X.; He, P.; Wang, X.; Dai, B. Zinc acetate supported on N-doped activated carbon as catalysts for acetylene acetoxylation. Chem. Eng. J., 2017, 309, 172-177.
[http://dx.doi.org/10.1016/j.cej.2016.09.090]
[115]
He, P.; Huang, L.; Wu, X.; Xu, Z.; Zhu, M.; Wang, X.; Dai, B. A novel high-activity Zn-Co catalyst for acetylene acetoxylation. Catalysts, 2018, 8(6), 239-248.
[http://dx.doi.org/10.3390/catal8060239]
[116]
Dong, X.; Wang, Y.; Yu, Y.; Zhang, M. DFT investigation on the synthesis mechanism of vinyl acetate from acetylene and acetic acid catalyzed by ordered mesoporous carbon supported zinc acetate. Ind. Eng. Chem. Res., 2018, 57(22), 7363-7373.
[http://dx.doi.org/10.1021/acs.iecr.8b00596]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy