Skip to main content
Log in

Tuning the microstructure and rheological properties of MXene-polymer composite ink by interaction control

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Since the discovery of MXene, which has been attracting attention as an alluring two-dimensional material with a distinct structure and mechanical and electrical capabilities, numerous attempts have been made to combine MXene with polymer additives to enhance and compensate for MXene’s inherent weakness. In this work, the rheological properties of MXene (Ti3C2Tx)-polymer composite inks of three different polymers with various interaction with MXene particles are examined. Polyethylene glycol (PEG), which is known to physically adsorb on the surface of MXene, improved MXene dispersion while enhancing the viscoelastic property of ink. MXene ink containing polyethylenimine (PEI) was destabilized forming a viscoelastic network structure as PEI of strong positive charge adsorbed on the MXene surface to neutralize negative charge and diminish electrostatic repulsion. In the case of MXene-polyacrylic acid (PAA) composite ink, the formation of hydrogen bonds between MXene and PAA resulted in a dense network structure with high viscoelasticity. In terms of rheological property sensitivity to concentration, MXene ink without polymer additives exhibited power-law behavior with the largest exponent, whereas MXene-polymer composite inks indicated moderate sensitivity. Our findings will aid in the design of MXene-based composites with optimum rheological properties for specific processes such as 3D printing and coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data of this study is available from the corresponding authors upon reasonable request.

References

  1. Xiu L, Wang Z, Yu M, Wu X, Qiu J (2018) Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano 12(8):8017–8028. https://doi.org/10.1021/acsnano.8b02849

    Article  CAS  Google Scholar 

  2. Orangi J, Hamade F, Davis VA, Beidaghi M (2020) 3D printing of additive-free 2D Ti3C2TX (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14(1):640–650. https://doi.org/10.1021/acsnano.9b07325

    Article  CAS  Google Scholar 

  3. Parajuli D, Murali N, D KC, Karki B, Samatha K, Kim AA, Park M, Pant B (2022) Advancements in MXene-polymer nanocomposites in energy storage and biomedical applications. Polymers 14(16):3433. https://doi.org/10.3390/polym14163433

    Article  CAS  Google Scholar 

  4. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644. https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  5. Zhang J, Kong N, Uzun S, Levitt A, Seyedin S, Lynch PA, Qin S, Han M, Yang W, Liu J, Wang X, Gogotsi Y, Razal JM (2020) Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv Mater 32(23):2001093. https://doi.org/10.1002/adma.202001093

    Article  CAS  Google Scholar 

  6. Shuck CE, Gogotsi Y (2020) Taking MXenes from the lab to commercial products. Chem Eng J 401:125786. https://doi.org/10.1016/j.cej.2020.125786

    Article  CAS  Google Scholar 

  7. Lukatskaya MR, Mashtalir O, Ren CE, Dall Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505. https://doi.org/10.1126/science.1241488

    Article  CAS  Google Scholar 

  8. Perera AAPR, Madhushani KAU, Punchihewa BT, Kumar A, Gupta RK (2023) MXene-based nanomaterials for multifunctional applications. Materials 16(3):1138. https://doi.org/10.3390/ma16031138

    Article  CAS  Google Scholar 

  9. Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13(8):8491–8494. https://doi.org/10.1021/acsnano.9b06394

    Article  CAS  Google Scholar 

  10. Morales-García Á, Calle-Vallejo F, Illas F (2020) MXenes: new horizons in catalysis. ACS Catal 10(22):13487–13503. https://doi.org/10.1021/acscatal.0c03106

    Article  CAS  Google Scholar 

  11. Lee Y, Kim SJ, Kim Y-J, Lim Y, Chae Y, Lee B-J, Kim Y-T, Han H, Gogotsi Y, Ahn CW (2020) Oxidation-resistant titanium carbide MXene films. J Mater Chem A 8(2):573–581. https://doi.org/10.1039/C9TA07036B

    Article  CAS  Google Scholar 

  12. Basara G, Saeidi-Javash M, Ren X, Bahcecioglu G, Wyatt BC, Anasori B, Zhang Y, Zorlutuna P (2020) Electrically conductive 3D printed Ti3C2Tx MXene-PEG composite constructs for cardiac tissue engineering. Acta Biomater 139:179–189. https://doi.org/10.1016/j.actbio.2020.12.033

    Article  CAS  Google Scholar 

  13. Muhammed Shameem M, Sasikanth SM, Annamalai R, Ganapathi Raman R (2021) A brief review on polymer nanocomposites and its applications. Mater Today Proc 45:2536–2539. https://doi.org/10.1016/j.matpr.2020.11.254

    Article  CAS  Google Scholar 

  14. Hsissou R, Seghiri R, Benzekri Z, Hilali M, Rafik M, Elharfi A (2021) Polymer composite materials: a comprehensive review. Compos Struct 262:113640. https://doi.org/10.1016/j.compstruct.2021.113640

    Article  CAS  Google Scholar 

  15. Kim S, Oh SM, Kim SY, Park JD (2021) Role of adsorbed polymers on nanoparticle dispersion in drying polymer nanocomposite films. Polymers 13(17):2960. https://doi.org/10.3390/polym13172960

    Article  CAS  Google Scholar 

  16. Tan P, Wang H, Xiao F, Lu X, Shang W, Deng X, Song H, Xu Z, Cao J, Gan T, Wang B, Zhou X (2022) Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat Commun 13(1):358. https://doi.org/10.1038/s41467-022-28027-y

    Article  CAS  Google Scholar 

  17. Carey M, Barsoum MW (2020) MXene polymer nanocomposites: a review. Mater Today Adv 9:100120. https://doi.org/10.1016/j.mtadv.2020.100120

    Article  CAS  Google Scholar 

  18. Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, Qiu J, Barsoum MW, Gogotsi Y (2014) Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci USA 111(47):16676–16681. https://doi.org/10.1073/pnas.1414215111

    Article  CAS  Google Scholar 

  19. Cao WT, Chen FF, Zhu YJ, Zhang YG, Jiang YY, Ma MG, Chen F (2018) Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5):4583–4593. https://doi.org/10.1021/acsnano.8b00997

    Article  CAS  Google Scholar 

  20. Liu G, Shen J, Ji Y, Liu Q, Liu G, Yang J, Jin W (2019) Two-dimensional Ti2CTx MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration. J Mater Chem A 7(19):12095–12104. https://doi.org/10.1039/C9TA01507H

    Article  CAS  Google Scholar 

  21. Huang Z, Wang S, Kota S, Pan Q, Barsoum MW, Li CY (2016) Structure and crystallization behavior of poly(ethylene oxide)/Ti3C2Tx MXene nanocomposites. Polymer 102:119–126. https://doi.org/10.1016/j.polymer.2016.09.011

    Article  CAS  Google Scholar 

  22. Zhang X, Fan C, Yao N, Zhang P, Hong T, Xu C, Cheng J (2018) Quaternary Ti3C2Tx enhanced ionic conduction in quaternized polysulfone membrane for alkaline anion exchange membrane fuel cells. J Membr Sci 563:882–887. https://doi.org/10.1016/j.memsci.2018.06.059

    Article  CAS  Google Scholar 

  23. Akuzum B, Maleski K, Anasori B, Lelyukh P, Alvarez NJ, Kumbur EC, Gogotsi Y (2018) Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 12(3):2685–2694. https://doi.org/10.1021/acsnano.7b08889

    Article  CAS  Google Scholar 

  24. Kim Y, Kim S, Kim BS, Park JH, Ahn KH, Park JD (2022) Yielding behavior of concentrated lithium-ion battery anode slurry. Phys Fluids 34(12):123112. https://doi.org/10.1063/5.0128872

    Article  CAS  Google Scholar 

  25. Lee J, Kim H (2020) Rheological properties and phase structure of polypropylene/polystyrene/multiwalled carbon nanotube composites. Korea-Aust Rheol J 32(2):153–158. https://doi.org/10.1007/s13367-020-0014-5

    Article  Google Scholar 

  26. Kim JH, Ahn JH, Hong JS, Ahn KH (2020) Change of rheological/mechanical properties of poly(caprolactone)/CaCO3 composite with particle surface modification. Korea-Aust Rheol J 32(1):29–39. https://doi.org/10.1007/s13367-020-0004-7

    Article  Google Scholar 

  27. Tezel GB, Arole K, Holta DE, Radovic M, Green MJ (2022) Interparticle interactions and rheological signatures of Ti3C2Tz MXene dispersions. J Colloid Interface Sci 605:120–128. https://doi.org/10.1016/j.jcis.2021.07.068

    Article  CAS  Google Scholar 

  28. Greaves M, Mende M, Wang J, Yang W, Barg S (2021) Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: Progress and challenges. J Mater Res 36(22):4578–4600. https://doi.org/10.1557/s43578-021-00282-7

    Article  CAS  Google Scholar 

  29. Lim S, Kim JH, Park H, Kwak C, Yang J, Kim J, Ryu SY, Lee J (2021) Role of electrostatic interactions in the adsorption of dye molecules by Ti3C2-MXenes. RSC Adv 11(11):6201–6211. https://doi.org/10.1039/D0RA10876F

    Article  CAS  Google Scholar 

  30. Deng Y, Shang T, Wu Z, Tao Y, Luo C, Liang J, Han D, Lyu R, Qi C, Lv W, Kang F, Yang QH (2019) Fast gelation of Ti3C2TX MXene initiated by metal ions. Adv Mater 31(43):1902432. https://doi.org/10.1002/adma.201902432

    Article  CAS  Google Scholar 

  31. Peng M, Yang W, Li L, Zhang K, Wang L, Hu T, Yuan K, Chen Y (2021) Fast assembly of MXene hydrogels by interfacial electrostatic interaction for supercapacitors. Chem Commun 57(82):10731–10734. https://doi.org/10.1039/D1CC04574A

    Article  CAS  Google Scholar 

  32. Quan B, Wang J, Li Y, Sui M, Xie H, Liu Z, Wu H, Lu X, Yi T (2023) Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity. Energy 262:125505. https://doi.org/10.1016/j.energy.2022.125505

    Article  CAS  Google Scholar 

  33. Xu D, Huang Q, Yang L, Chen Y, Lu Z, Liu H, Han P, Guo L, Wang C, Liu C (2022) Experimental design of composite films with thermal management and electromagnetic shielding properties based on polyethylene glycol and MXene. Carbon 202:1–12. https://doi.org/10.1016/j.carbon.2022.11.010

    Article  CAS  Google Scholar 

  34. Ankit KF, Pethe S, Lim K, Kulkarni MR, Accoto D, Mathews N (2021) MXene incorporated polymeric hybrids for stiffness modulation in printed adaptive surfaces. Nano Energy 90:106548. https://doi.org/10.1016/j.nanoen.2021.106548

    Article  CAS  Google Scholar 

  35. Lu X, Huang H, Zhang X, Lin P, Huang J, Sheng X, Zhang Li QuJ (2019) Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-sTable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos Part B Eng 177:107372. https://doi.org/10.1016/j.compositesb.2019.107372

    Article  CAS  Google Scholar 

  36. Mo Z, Mo P, Yi M, Yi M, Hu Z, Tan G, Selim M, Chen Y, Chen X, Hao Z, Wei X (2021) Ti3C2Tx @polyvinyl alcohol foam-supported phase change materials with simultaneous enhanced thermal conductivity and solar-thermal conversion performance. Solar Energy Mater Solar Cells 219:110813. https://doi.org/10.1016/j.solmat.2020.110813

    Article  CAS  Google Scholar 

  37. Wazalwar R, Tripathi M, Raichur AM (2022) Curing behavior and mechanical properties of tetra-functional epoxy reinforced with polyethyleneimine-functionalized MXene. ACS Appl Polym Mater 4(4):2573–2584. https://doi.org/10.1021/acsapm.1c01876

    Article  CAS  Google Scholar 

  38. Zhou G, Wang X, Wan T, Liu C, Chen W, Jiang S, Han J, Yan Y, Li MC, Mei C (2022) Electrostatic self-assembly of Ti3C2Tx MXene/cellulose nanofiber composite films for wearable Supercapacitor and joule heater. Energy Environ Mater. https://doi.org/10.1002/eem2.12454

    Article  Google Scholar 

  39. Zhang Y, Chen D, Li N, Xu Q, Li H, He J, Lu J (2022) High-performance and stable two-dimensional mxene-polyethyleneimine composite lamellar membranes for molecular separation. ACS Appl Mater Interfaces 14(8):10237–10245. https://doi.org/10.1021/acsami.1c20540

    Article  CAS  Google Scholar 

  40. Wu Y, Wu L, Zheludkevich ML, Chen Y, Serdechnova M, Yao W, Blawert C, Atrens A, Pan F (2021) MgAl-V2 O74- LDHs/(PEI/MXene)10 composite film for magnesium alloy corrosion protection. J Mater Sci Technol 91:28–39. https://doi.org/10.1016/j.jmst.2021.03.011

    Article  CAS  Google Scholar 

  41. He S, Sun X, Zhang H, Yuan C, Wei Y, Li J (2021) Preparation strategies and applications of MXene-polymer composites: a review. Macromol Rapid Commun 42(19):2100324. https://doi.org/10.1002/marc.202100324

    Article  CAS  Google Scholar 

  42. Zhao W, Cao J, Wang F, Tian F, Zheng W, Bao Y, Zhang K, Zhang Z, Yu J, Xu J, Liu X, Lu B (2022) 3D Printing of stretchable, adhesive and conductive Ti3C2TX-polyacrylic acid hydrogels. Polymers 14(10):1992. https://doi.org/10.3390/polym14101992

    Article  CAS  Google Scholar 

  43. Liu J, Zhang HB, Xie X, Yang R, Liu Z, Liu Y, Yu ZZ (2018) Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 14(45):1802479. https://doi.org/10.1002/smll.201802479

    Article  CAS  Google Scholar 

  44. Zhang Y, Li S, Huang R, He J, Sun Y, Qin Y, Shen L (2022) Stabilizing MXene-based nanofiltration membrane by forming analogous semi-interpenetrating network architecture using flexible poly(acrylic acid) for effective wastewater treatment. J Membrane Sci 648:120360. https://doi.org/10.1016/j.memsci.2022.120360

    Article  CAS  Google Scholar 

  45. Bai Y, Lu Y, Bi S, Wang W, Lin F, Zhu F, Yang P, Ding N, Liu S, Zhao W, Liu N, Zhao Q (2023) Stretchable and photothermal MXene/PAA hydrogel in strain sensor for wearable human-machine interaction electronics. Adv Mater Technol. https://doi.org/10.1002/admt.202201767

    Article  Google Scholar 

  46. Li Y, Yan J, Liu Y, Xie XM (2022) Super tough and intelligent multibond network physical hydrogels facilitated by Ti3C2Tx MXene nanosheets. ACS Nano 16(1):1567–1577. https://doi.org/10.1021/acsnano.1c10151

    Article  CAS  Google Scholar 

  47. Zhang J, Li H, Tu J, Shi R, Luo Z, Xiong C, Jiang M (2018) Shape stability of polyethylene glycol/acetylene black phase change composites for latent heat storage. Adv Mater Sci Eng 2018:1–9. https://doi.org/10.1155/2018/3954163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Research Foundation of Korea (NRF) grants funded by the Korean Government (MSIT) under Grant Nos. NRF-2015M3A7B6027973, 2018R1A5A1024127, and 2021R1C1C1013157. Moreover, Sookmyung Women’s University research grants funded this study (No.1-2103-2007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghee Lee or Jun Dong Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dohoon Kim: Deceased.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Kim, E., Kim, D. et al. Tuning the microstructure and rheological properties of MXene-polymer composite ink by interaction control. Korea-Aust. Rheol. J. 35, 117–125 (2023). https://doi.org/10.1007/s13367-023-00058-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00058-x

Keywords

Navigation