Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Green Approach Toward Triazole Forming Reactions for Developing Anticancer Drugs

Author(s): Shiva K. Rastogi*, Veronica C. Ciliberto, Monica Z. Trevino, Brooke A. Campbell and William J. Brittain

Volume 21, Issue 4, 2024

Published on: 04 September, 2023

Page: [380 - 420] Pages: 41

DOI: 10.2174/1570179420666230508125144

Price: $65

Abstract

Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.

Keywords: Click chemistry, triazole, green approach, natural products, anticancer, cytotoxicity.

Graphical Abstract
[1]
(a) Kar, S.; Sanderson, H.; Roy, K.; Benfenati, E.; Leszczynski, J. Green chemistry in the synthesis of pharmaceuticals. Chem. Rev., 2022, 122(3), 3637-3710.
[http://dx.doi.org/10.1021/acs.chemrev.1c00631] [PMID: 34910451];
(b) Brambila, C.; Boyd, P.; Keegan, A.; Sharma, P.; Vetter, C.; Ponnusamy, E.; Patwardhan, S.V. A comparison of environmental impact of various silicas using a green chemistry evaluator. ACS Sustain. Chem.& Eng., 2022, 10(16), 5288-5298.
[http://dx.doi.org/10.1021/acssuschemeng.2c00519] [PMID: 35493693]
[2]
Anastas, P.T.; Williamson, T.C. Green chemistry: frontiers in benign chemical syntheses and processes; Oxford University Press: Oxford, United Kingdom, 1998.
[3]
(a) Ivanković, A.; Dronjić, A.; Bevanda, A.M.; Talić, S. Review of 12 principles of green chemistry in practice. Int. J. Sustain. Green Energy, 2017, 6(3), 39-48.
[http://dx.doi.org/10.11648/j.ijrse.20170603.12];
(b) Ahluwalia, V.K.; Kidwai, M. Basic principles of green chemistry in new trends in green chemistry; Springer: Dordrecht, 2004.
[http://dx.doi.org/10.1007/978-1-4020-3175-5]
[4]
Bryan, M.C.; Dalton, C.; Diorazio, L.J.; Doerfler, J.; Doyle, L.M.; Engl, O.D.; Molina, A.G.; Han, Z.S.; Hosford, J.; Howell, G.P.; Hutchby, M.; Latham, J.; Li, W.; Munday, R.H.; Navarro, A.; Parmentier, M.; Pawlas, J.; Richardson, P.F.; Steven, A.; Terrett, J.A.; Zeng, M. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2021, 25(10), 2167-2176.
[http://dx.doi.org/10.1021/acs.oprd.1c00352]
[5]
Document for green chemistry challenge: Award recipients, 1996−2016. 2021. Available From: https://www.epa.gov/greenchemistry/document-green-chemistry-challenge-award-recipients-1996-2016
[6]
Ratti, R. Industrial applications of green chemistry: Status, Challenges and Prospects. SN Appl. Sci., 2020, 2(2), 263.
[http://dx.doi.org/10.1007/s42452-020-2019-6]
[7]
Bryan, M.C.; Dalton, C.; Díaz-Rodríguez, A.; Doerfler, J.; Engl, O.D.; Ferguson, P.; Molina, A.G.; Han, Z.S.; Hosford, J.; Howell, G.P.; Hutchby, M.; Li, W.; Munday, R.H.; Navarro, A.; Parmentier, M.; Pawlas, J.; Richardson, P.F.; Smith, W.J., III; Steven, A.; Takale, B.S.; Terrett, J.A.; Treitler, D.S.; Zeng, M. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2022, 26(2), 251-262.
[http://dx.doi.org/10.1021/acs.oprd.2c00020]
[8]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41(14), 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4] [PMID: 12203546]
[9]
(a) Novianti, I.; Kowada, T.; Mizukami, S. Clip to click: Controlling inverse electron-demand Diels-Alder reactions with macrocyclic tetrazines. Org. Lett., 2022, 24(17), 3223-3226.
[http://dx.doi.org/10.1021/acs.orglett.2c01010] [PMID: 35446571];
(b) Agrahari, A.K.; Bose, P.; Jaiswal, M.K.; Rajkhowa, S.; Singh, A.S.; Hotha, S.; Mishra, N.; Tiwari, V.K. click chemistry in glycoscience and their diverse applications. Chem. Rev., 2021, 121(13), 7638-7956.
[http://dx.doi.org/10.1021/acs.chemrev.0c00920] [PMID: 34165284];
(c) Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[10]
(a) Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8, 1128-1137.;
(b) Mani, G.S.; Donthiboina, K.; Shaik, S.P.; Shankaraiah, N.; Kamal, A. Iodine-mediated C-N and N-N bond formation: A facile one-pot synthetic approach to 1,2,3-triazoles under metal-free and azide-free condition. RSC Advances, 2019, 9, 27021-27031.
[http://dx.doi.org/10.1039/C9RA06005G] [PMID: 35528599]
[11]
Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev., 2013, 113(7), 4905-4979.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[12]
(a) Genin, M.J.; Allwine, D.A.; Anderson, D.J.; Barbachyn, M.R.; Emmert, D.E.; Garmon, S.A.; Graber, D.R.; Grega, K.C.; Hester, J.B.; Hutchinson, D.K.; Morris, J.; Reischer, R.J.; Ford, C.W.; Zurenko, G.E.; Hamel, J.C.; Schaadt, R.D.; Stapert, D.; Yagi, B.H. Substituent effects on the antibacterial activity of nitrogen-carbon-linked (azolylphenyl)oxazolidinones with expanded activity against the fastidious gram-negative organisms Haemophilus influenzae and Moraxella catarrhalis. J. Med. Chem., 2000, 43(5), 953-970.
[http://dx.doi.org/10.1021/jm990373e] [PMID: 10715160];
(b) Alvarez, R.; Velázquez, S.; San-Félix, A.; Aquaro, S.; Clercq, E.D.; Perno, C.F.; Karlsson, A.; Balzarini, J.; Camarasa, M.J. 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-Dribofuranosyl]- 3′-spiro-5′'-(4′'-amino-1′',2′'-oxathiole 2′',2′'- dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. J. Med. Chem., 1994, 37(24), 4185-4194.
[http://dx.doi.org/10.1021/jm00050a015] [PMID: 7527463];
(c) Löber, S.; Rodriguez-Loaiza, P.; Gmeiner, P. Click linker: Efficient and high-yielding synthesis of a new family of SPOS resins by 1,3-dipolar cycloaddition. Org. Lett., 2003, 5(10), 1753-1755.
[http://dx.doi.org/10.1021/ol034520l] [PMID: 12735769]
[13]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[14]
Eduardo, H.G.; Hussene, C.M.B.; Dias, G.G.; Diogo, E.B.T.; De Melo, I.M.M.; Rodrigues, B.L.; Mauro, G.; Valenca, W.O.; Cavalcanti, B.C.; Pessoa, C. Eufra^nio, N.; Ju’nior, S. Bioorg., 1,2,3-Triazole-, arylamino- and thio-substituted 1,4-naphthoquinones: Potent antitumor activity, electrochemical aspects, and bioisosteric replacement of C-ring-modified lapachones. Med. Chem., 2014, 22, 1608-1619.
[15]
Kumar, K.; Pradines, B.; Madamet, M.; Amalvict, R.; Benoit, N.; Kumar, V. 1H-1,2,3-triazole tethered isatin-ferrocene conjugates: Synthesis and in vitro antimalarial evaluation. Eur. J. Med. Chem., 2014, 87, 801-804.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.024] [PMID: 25440881]
[16]
Petrova, K.T.; Potewar, T.M.; Correia-da-Silva, P.; Barros, M.T.; Calhelha, R.C.; Ćiric, A.; Soković, M; Ferreira, I.C.F.R. Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydr. Res., 2015, 417, 66-71.
[http://dx.doi.org/10.1016/j.carres.2015.09.003] [PMID: 26432609]
[17]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[18]
(a) Kamal, A.; Prabhakar, S.; Janaki Ramaiah, M.; Venkat Reddy, P.; Ratna Reddy, C.; Mallareddy, A.; Shankaraiah, N.; Lakshmi, N.R.T.; Pushpavalli, S.N.C.V.L.; Pal-Bhadra, M. Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur. J. Med. Chem., 2011, 46(9), 3820-3831.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.050] [PMID: 21676506];
(b) Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K. Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2008, 43(2), 404-419.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.033] [PMID: 17531354]
[19]
Bray, F.; Møller, B. Predicting the future burden of cancer. Nat. Rev. Cancer, 2006, 6(1), 63-74.
[http://dx.doi.org/10.1038/nrc1781] [PMID: 16372017]
[20]
Noshiranzadeh, N.; Emami, M.; Bikas, R.; Kozakiewicz, A. Green click synthesis of β-hydroxy-1,2,3-triazoles in water in the presence of a Cu(II)–azide catalyst: a new function for Cu(II)–azide complexes. New J. Chem., 2017, 41(7), 2658-2667.
[http://dx.doi.org/10.1039/C6NJ03865D]
[21]
Wu, P.; Feldman, A.K.; Nugent, A.K.; Hawker, C.J.; Scheel, A.; Voit, B.; Pyun, J.; Fréchet, J.M.J.; Sharpless, K.B.; Fokin, V.V. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(i)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed., 2004, 43(30), 3928-3932.
[http://dx.doi.org/10.1002/anie.200454078] [PMID: 15274216]
[22]
(a) Tornoe, C.W.; Christensen, C.; Meldal, M. 1,2,3-Triazole-[2,5-bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3′-spiro-5”-(4”-amino-1”,2”-oxathiole 2”, 2”-dioxide) (TSAO) Analogs: synthesis and anti-HIV-1. Eur. J. Med. Chem., 2002, 3057-3064.;
(b) Dondoni, A. Triazole: the keystone in glycosylated molecular architectures constructed by a click rection. Chem. Asian J., 2007, 2(6), 700-708.
[23]
Cooper, G.M. The cell: A molecular approach. In: The Development and Causes of Cancer, 2nd ed; Sinauer Associates: Sunderland, MA, 2000.
[24]
Yadav, P.; Lal, K.; Kumar, A.; Guru, S.K.; Jaglan, S.; Bhushan, S. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles. Eur. J. Med. Chem., 2017, 126, 944-953.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.030] [PMID: 28011424]
[25]
a) Baharloui, M.; Mirshokraee, S.A.; Monfared, A.; Houshdar Tehrani, M.H. Design and synthesis of novel triazole-based peptide analogues as anticancer agents. Iran. J. Pharm. Res., 2019, 18(3), 1299-1308.
[PMID: 32641940];
(b) Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[26]
Krzywik, J.; Nasulewicz-Goldeman, A.; Mozga, W.; Wietrzyk, J. Huczyński, A. Novel double-modified colchicine derivatives bearing 1,2,3-triazole: design, synthesis, and biological activity evaluation. ACS Omega, 2021, 6(40), 26583-26600.
[http://dx.doi.org/10.1021/acsomega.1c03948] [PMID: 34661013]
[27]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[28]
(a) Krzywik, J.; Aminpour, M.; Maj, E.; Mozga, W.; Wietrzyk, J.; Tuszyński, J.A; Huczyn ́ski, A.; Huczyń ski, A. New series of double-modified colchicine derivatives: synthesis, cytotoxic effect and molecular docking. Molecules, 2020, 25(15), 3540-3556.
[http://dx.doi.org/10.3390/molecules25153540] [PMID: 32748887];
(b) Krzywik, J.; Mozga, W.; Aminpour, M.; Janczak, J.; Maj, E.; Wietrzyk, J.; Tuszyński, J.A; Huczyń ski, A. Synthesis, antiproliferative activity and molecular docking studies of novel doubly modified colchicine amides and sulfonamides as anticancer agents. Molecules, 2020, 25(8), 1789-1820.
[http://dx.doi.org/10.3390/molecules25081789] [PMID: 32748887]
[29]
(a) Kulkarni, P.; Wagh, P.; Zubaidha, P. An improved and eco-friendly method for the synthesis of flavanone by the cyclization of 2′-hydroxy chalcone using methane sulphonic acid as catalyst. Chemistry Journal, 2012, 2, 106-110.;
(b) Zheng, X.; Jiang, H.; Xie, J.; Yin, Z.; Zhang, H. Highly efficient and green synthesis of flavanones and tetrahydroquinolones. Synth. Commun., 2013, 43(7), 1023-1029.
[http://dx.doi.org/10.1080/00397911.2011.621096]
[30]
Paredes, A.; Alzuru, M.; Mendez, J.; Rodríguez-Ortega, M. Anti-Sindbis activity of flavanones hesperetin and naringenin. Biol. Pharm. Bull., 2003, 26(1), 108-109.
[http://dx.doi.org/10.1248/bpb.26.108] [PMID: 12520185]
[31]
Murti, Y.; Mishra, P. Synthesis and evaluation of flavanones as anticancer agents. Indian J. Pharm. Sci., 2014, 76(2), 163-166.
[PMID: 24843190]
[32]
Majo, D.D.; Giammanco, M.; Guardia, M.L.; Tripoli, E.; Giammanco, S.; Finotti, E. Flavanones in citrus fruit: Structure–antioxidant activity relationships. Food Res. Int., 2005, 38(10), 1161-1166.
[http://dx.doi.org/10.1016/j.foodres.2005.05.001]
[33]
Njamen, D.; Mbafor, J.T.; Fomum, Z.T.; Kamanyi, A.; Mbanya, J-C.; Recio, M.C.; Giner, R.M.; Máñez, S.; Ríos, J.L. Anti-inflammatory activities of two flavanones, sigmoidin A and sigmoidin B, from Erythrina sigmoidea. Planta Med., 2004, 70(2), 104-107.
[http://dx.doi.org/10.1055/s-2004-815484] [PMID: 14994185]
[34]
Veljkovic, V.; Mouscadet, J.F.; Veljkovic, N.; Glisic, S.; Debyser, Z. Simple criterion for selection of flavonoid compounds with anti-HIV activity. Bioorg. Med. Chem. Lett., 2007, 17(5), 1226-1232.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.029] [PMID: 17189684]
[35]
Itoh, K.; Masuda, M.; Naruto, S.; Murata, K.; Matsuda, H. Antiallergic activity of unripe Citrus hassaku fruits extract and its flavanone glycosides on chemical substance-induced dermatitis in mice. J. Nat. Med., 2009, 63(4), 443-450.
[http://dx.doi.org/10.1007/s11418-009-0349-1] [PMID: 19603253]
[36]
(a) Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013, 1-16.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791];
(b) Sharma, V.; Janmeda, P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab. J. Chem., 2017, 10(4), 509-514.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.019]
[37]
Murti, Y.; Mishra, P. Flavanone: A versatile heterocyclic nucleus. Int. J. Chemtech Res., 2014, 6, 3160-3178.
[38]
Gupta, A.; Jamatia, R.; Patil, R.A.; Ma, Y.R.; Pal, A.K. Copper oxide/reduced graphene oxide nanocomposite-catalyzed synthesis of flavanones and flavanones with triazole hybrid molecules in one pot: A green and sustainable approach. ACS Omega, 2018, 3(7), 7288-7299.
[http://dx.doi.org/10.1021/acsomega.8b00334] [PMID: 31458889]
[39]
Morton, J.F. Fruits of warm climates; Florida Flair Books: Miami, 1987, pp. 65-69.
[40]
Trevisan, M.T.S.; Pfundstein, B.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H.; Owen, R.W. Characterization of alkyl phenols in cashew (Anacardium occidentale) products and assay of their antioxidant capacity. Food Chem. Toxicol., 2006, 44(2), 188-197.
[http://dx.doi.org/10.1016/j.fct.2005.06.012] [PMID: 16095792]
[41]
Voirin, C.; Caillol, S.; Sadavarte, N.V.; Tawade, B.V.; Boutevin, B.; Wadgaonkar, P.P. Functionalization of cardanol: Towards biobased polymers and additives. Polym. Chem., 2014, 5(9), 3142-3162.
[http://dx.doi.org/10.1039/C3PY01194A]
[42]
Braga, F.C.; Ojeda, M.; Perdomo, R.T.; de Albuquerque, S.; Rafique, J.; de Lima, D.P.; Beatriz, A. Synthesis of cardanol-based 1,2,3-triazoles as potential green agents against neoplastic cells. Sustain. Chem. Pharm., 2021, 20, 100408.
[http://dx.doi.org/10.1016/j.scp.2021.100408]
[43]
Srivastava, R. Theoretical studies on the molecular properties, toxicity, and biological efficacy of 21 new chemical entities. ACS Omega, 2021, 6(38), 24891-24901.
[http://dx.doi.org/10.1021/acsomega.1c03736] [PMID: 34604670]
[44]
Russell, R.G.G. Bisphosphonates: The first 40years. Bone, 2011, 49(1), 2-19.
[http://dx.doi.org/10.1016/j.bone.2011.04.022] [PMID: 21555003]
[45]
(a) Winter, M.C.; Holen, I.; Coleman, R.E. Exploring the anti-tumour activity of bisphosphonates in early breast cancer. Cancer Treat. Rev., 2008, 34(5), 453-475.
[http://dx.doi.org/10.1016/j.ctrv.2008.02.004] [PMID: 18423992];
(b) Matsumoto, S.; Kimura, S.; Segawa, H.; Kuroda, J.; Yuasa, T.; Sato, K.; Nogawa, M.; Tanaka, F.; Maekawa, T.; Wada, H. Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anti-cancer agents against small cell lung cancer cell lines. Lung Cancer, 2005, 47(1), 31-39.
[http://dx.doi.org/10.1016/j.lungcan.2004.06.003] [PMID: 15603852];
(c) Lee, M.V.; Fong, E.M.; Singer, F.R.; Guenette, R.S. Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res., 2001, 61(6), 2602-2608.
[PMID: 11289137];
(d) Shipman, C.M.; Rogers, M.J.; Apperley, J.F.; Russell, R.G.G.; Croucher, P.I. Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br. J. Haematol., 1997, 98(3), 665-672.
[http://dx.doi.org/10.1046/j.1365-2141.1997.2713086.x] [PMID: 9332325];
(e) Ural, A.U.; Yilmaz, M.I.; Avcu, F.; Pekel, A.; Zerman, M.; Nevruz, O.; Sengul, A.; Yalcin, A. The bisphosphonate zoledronic acid induces cytotoxicity in human myeloma cell lines with enhancing effects of dexamethasone and thalidomide. Int. J. Hematol., 2003, 78(5), 443-449.
[http://dx.doi.org/10.1007/BF02983818] [PMID: 14704038]
[46]
Zekri, J.; Mansour, M.; Karim, S.M. The anti-tumour effects of zoledronic acid. J. Bone Oncol., 2014, 3(1), 25-35.
[http://dx.doi.org/10.1016/j.jbo.2013.12.001] [PMID: 26909294]
[47]
(a) Dunford, J.E.; Thompson, K.; Coxon, F.P.; Luckman, S.P.; Hahn, F.M.; Poulter, C.D.; Ebetino, F.H.; Rogers, M.J. Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J. Pharmacol. Exp. Ther., 2001, 296(2), 235-242.
[PMID: 11160603];
(b) Rondeau, J.M.; Bitsch, F.; Bourgier, E.; Geiser, M.; Hemmig, R.; Kroemer, M.; Lehmann, S.; Ramage, P.; Rieffel, S.; Strauss, A.; Green, J.R.; Jahnke, W. Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. ChemMedChem, 2006, 1(2), 267-273.
[http://dx.doi.org/10.1002/cmdc.200500059] [PMID: 16892359];
(c) Kavanagh, K.L.; Guo, K.; Dunford, J.E.; Wu, X.; Knapp, S.; Ebetino, F.H.; Rogers, M.J.; Russell, R.G.G.; Oppermann, U. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7829-7834.
[http://dx.doi.org/10.1073/pnas.0601643103] [PMID: 16684881]
[48]
Kavanagh, K.L.; Dunford, J.E.; Bunkoczi, G.; Russell, R.G.G.; Oppermann, U. The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding. J. Biol. Chem., 2006, 281(31), 22004-22012.
[http://dx.doi.org/10.1074/jbc.M602603200] [PMID: 16698791]
[49]
Dunford, J.E.; Kwaasi, A.A.; Rogers, M.J.; Barnett, B.L.; Ebetino, F.H.; Russell, R.G.G.; Oppermann, U.; Kavanagh, K.L. Structure-activity relationships among the nitrogen containing bisphosphonates in clinical use and other analogues: time-dependent inhibition of human farnesyl pyrophosphate synthase. J. Med. Chem., 2008, 51(7), 2187-2195.
[http://dx.doi.org/10.1021/jm7015733] [PMID: 18327899]
[50]
(a) Abdelkarim, M.; Guenin, E.; Sainte-Catherine, O.; Vintonenko, N.; Peyri, N.; Perret, G.Y.; Crepin, M.; Khatib, A.M.; Lecouvey, M.; Di Benedetto, M. New symmetrically esterified m-bromobenzyl non-aminobisphosphonates inhibited breast cancer growth and metastases. PLoS One, 2009, 4(3), e4685.
[http://dx.doi.org/10.1371/journal.pone.0004685] [PMID: 19262688];
(b) Monteil, M.; Migianu-Griffoni, E.; Sainte-Catherine, O.; Di Benedetto, M.; Lecouvey, M. Bisphosphonate prodrugs: Synthesis and biological evaluation in HuH7 hepatocarcinoma cells. Eur. J. Med. Chem., 2014, 77, 56-64.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.054] [PMID: 24607589];
(c) Migianu-Griffoni, E.; Chebbi, I.; Kachbi, S.; Monteil, M.; Sainte-Catherine, O.; Chaubet, F.; Oudar, O.; Lecouvey, M. Synthesis and biological evaluation of new bisphosphonate-dextran conjugates targeting breast primary tumor. Bioconjug. Chem., 2014, 25(2), 224-230.
[http://dx.doi.org/10.1021/bc400317h] [PMID: 24400882]
[51]
Legigan, T.; Migianu-Griffoni, E.; Redouane, M.A.; Descamps, A.; Deschamp, J.; Gager, O.; Monteil, M.; Barbault, F.; Lecouvey, M. Synthesis and preliminary anticancer evaluation of new triazole bisphosphonate-based isoprenoid biosynthesis inhibitors. Eur. J. Med. Chem., 2021, 214, 113241-113250.
[http://dx.doi.org/10.1016/j.ejmech.2021.113241] [PMID: 33571830]
[52]
Lv, M.; Wang, M.; Lu, K.; Peng, L.; Zhao, Y. Synthesis and characterization of novel 1,2,3-triazoles containing a 1-hydroxyalkane-1,1-bisphosphonate substituent. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(4), 206-210.
[http://dx.doi.org/10.1080/10426507.2017.1417299]
[53]
Sylvester, P.W. Optimization of the tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. Methods Mol. Biol., 2011, 716, 157-168.
[http://dx.doi.org/10.1007/978-1-61779-012-6_9] [PMID: 21318905]
[54]
Bender, I.G.W.; Glen, M.; Buratto, S.D.; Evans, R.D. Thiabendazole- containing antifungal composition. US Pat., US4962093, 1990.
[55]
Jalali, F.; Dorraji, P.S. Interaction of anthelmintic drug (thiabendazole) with DNA: Spectroscopic and molecular modeling studies. Arab. J. Chem., 2017, 10, S3947-S3954.
[http://dx.doi.org/10.1016/j.arabjc.2014.06.001]
[56]
Mothilal, K.K.; Karunakaran, C.; Rajendran, A.; Murugesan, R. Synthesis, X-ray crystal structure, antimicrobial activity and photodynamic effects of some thiabendazole complexes. J. Inorg. Biochem., 2004, 98(2), 322-332.
[http://dx.doi.org/10.1016/j.jinorgbio.2003.10.017] [PMID: 14729312]
[57]
El Bourakadi, K.; Merghoub, N.; Hicham, G.; Mekhzoum, M.E.M.; Essassi, E.M.; Qaiss, A.; Bouhfid, R. Synthesis, characterization and in vitro antiproliferative evaluation of ionic liquids based on alkyl-substituted thiabendazolium. J. Mol. Liq., 2019, 282, 63-69.
[http://dx.doi.org/10.1016/j.molliq.2019.03.007]
[58]
El Bourakadi, K.; Mekhzoum, M.E.M.; Saby, C.; Morjani, H.; Chakchak, H.; Merghoub, N.; Qaiss, A.; Bouhfid, R. Synthesis, characterization and in vitro anticancer activity of thiabendazole-derived 1,2,3-triazole derivatives. New J. Chem., 2020, 44(28), 12099-12106.
[http://dx.doi.org/10.1039/C9NJ05685H]
[59]
(a) Kategaonkar, A.H.; Shinde, P.V.; Kategaonkar, A.H.; Pasale, S.K.; Shingate, B.B.; Shingare, M.S. Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach. Eur. J. Med. Chem., 2010, 45(7), 3142-3146.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.002] [PMID: 20435389];
(b) Chen, H.; Zuo, S.; Wang, X.; Tang, X.; Zhao, M.; Lu, Y.; Chen, L.; Liu, J.; Liu, Y.; Liu, D.; Zhang, S.; Li, T. Synthesis of 4β-triazole-podophyllotoxin derivatives by azide–alkyne cycloaddition and biological evaluation as potential antitumor agents. Eur. J. Med. Chem., 2011, 46(9), 4709-4714.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.024] [PMID: 21821321]
[60]
(a) Avijeet, C.; Amy, A.; Charles, G. Novel piperazine-based compounds inhibit microtubule dynamics and sensitize colon cancer cells to tumor necrosis factor-induced apoptosis. J. Biol. Chem., 2014, 289, 2978-2991.;
(b) Al-Ghorbani, A.; Gouda, M. A.; Baashen, M.; Alharbi, O.; Almalki, F. A.; Ranganatha, L. V.; Polyakova, E.B.; Sabirzyanov, D.R.; Prozorova, N.A.; Foteeva, A.V. Physicochemical Properties and Methods of Analysis of Vildagliptin (Review). Pharm. Chem. J., 2022, 56(1), 110-117.
[http://dx.doi.org/10.1007/s11094.022.02606-1] [PMID: 35370321]
[61]
Chopra, A.; Anderson, A.; Giardina, C. Novel piperazine-based compounds inhibit microtubule dynamics and sensitize colon cancer cells to tumor necrosis factor-induced apoptosis J. Biol. Chem., 2014, 289(5), 2978-2991.
[http://dx.doi.org/10.1074/jbc.M113.499319] [PMID: 24338023]
[62]
O’Boyle, N.M.; Ana, G.; Kelly, P.M.; Nathwani, S.M.; Noorani, S.; Fayne, D.; Bright, S.A.; Twamley, B.; Zisterer, D.M.; Meegan, M.J. Synthesis and evaluation of antiproliferative microtubule-destabilising combretastatin A-4 piperazine conjugates. Org. Biomol. Chem., 2019, 17(25), 6184-6200.
[http://dx.doi.org/10.1039/C9OB00558G] [PMID: 31173031]
[63]
Manasa, K.L.; Thatikonda, S.; Sigalapalli, D.K.; Vuppaladadium, S.; Devi, G.P.; Godugu, C.; Alvala, M.; Nagesh, N.; Babu, B.N. Design and synthesis of substituted (1-(benzyl)-1 H -1,2,3-triazol-4-yl)(piperazin-1-yl)methanone conjugates: study on their apoptosis inducing ability and tubulin polymerization inhibition. RSC Medicinal Chemistry, 2020, 11(11), 1295-1302.
[http://dx.doi.org/10.1039/D0MD00162G] [PMID: 34095841]
[64]
Jadala, C.; Sathish, M.; Anchi, P.; Tokala, R.; Lakshmi, U.J.; Reddy, V.G.; Shankaraiah, N.; Godugu, C.; Kamal, A. Synthesis of combretastatin-A4 carboxamidest that mimic sulfonyl piperazines by a molecular hybridization approach: in vitro cytotoxicity evaluation and inhibition of tubulin polymerization. ChemMedChem, 2019, 14(24), 2052-2060.
[http://dx.doi.org/10.1002/cmdc.201900541] [PMID: 31674147]
[65]
Roshandel, S.; Suri, S.C.; Marcischak, J.C.; Rasul, G.; Surya Prakash, G.K. Catalyst and solvent free microwave-assisted synthesis of substituted 1,2,3-triazoles. Green Chem., 2018, 20(16), 3700-3704.
[http://dx.doi.org/10.1039/C8GC01516C]
[66]
Bush, K. Beta-lactamase inhibitors from laboratory to clinic. Clin. Microbiol. Rev., 1988, 1(1), 109-123.
[http://dx.doi.org/10.1128/CMR.1.1.109] [PMID: 3060240]
[67]
Tang, K.; Wu, Y.H.; Song, Y.; Yu, B. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J. Hematol. Oncol., 2021, 14(1), 68-89.
[http://dx.doi.org/10.1186/s13045-021-01080-8] [PMID: 33883013]
[68]
Heinrich, T.; Seenisamy, J.; Becker, F.; Blume, B.; Bomke, J.; Dietz, M.; Eckert, U.; Friese-Hamim, M.; Gunera, J.; Hansen, K.; Leuthner, B.; Musil, D.; Pfalzgraf, J.; Rohdich, F.; Siegl, C.; Spuck, D.; Wegener, A.; Zenke, F.T. Identification of methionine minopeptidase-2 (MetAP-2) inhibitor M8891: A clinical compound for the treatment of cancer. J. Med. Chem., 2019, 62(24), 11119-11134.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01070] [PMID: 31725285]
[69]
Becer, C.R.; Hoogenboom, R.; Schubert, U.S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed., 2009, 48(27), 4900-4908.
[http://dx.doi.org/10.1002/anie.200900755]
[70]
(a) Chatkewitz, L.E.; Halonski, J.F.; Padilla, M.S.; Young, D.D. Investigation of copper-free alkyne/azide 1,3-dipolar cycloadditions using microwave irradiation. Bioorg. Med. Chem. Lett., 2018, 28(2), 81-84.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.007] [PMID: 29248298];
(b) Kwok, S.W.; Fotsing, J.R.; Fraser, R.J.; Rodionov, V.O.; Fokin, V.V. Transition-metal-free catalytic synthesis of 1,5-diaryl-1,2,3-triazoles. Org. Lett., 2010, 12(19), 4217-4219.
[http://dx.doi.org/10.1021/ol101568d] [PMID: 20825167]
[71]
Li, B.L. Azidotrimethylsilane. Synlett, 2012, 1554-1555.
[72]
Bassyouni, F.A.; Abu-Bakr, S.M.; Rehim, M.A. Evolution of microwave irradiation and its application in green chemistry and biosciences. Res. Chem. Intermed., 2012, 38(2), 283-322.
[http://dx.doi.org/10.1007/s11164-011-0348-1]
[73]
Huang, Q.; Zheng, M.; Yang, S.; Kuang, C.; Yu, C.; Yang, Q. Structure–activity relationship and enzyme kinetic studies on 4-aryl-1H-1,2,3-triazoles as indoleamine 2,3-dioxygenase (IDO) inhibitors. Eur. J. Med. Chem., 2011, 46(11), 5680-5687.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.044] [PMID: 21925773]
[74]
Hoekstra, W.J.; Schotzinger, R.J.; Rafferty, S.W. US Pat. Appl. 20140121248A1 2014.
[75]
Beaulieu, P.L.; Forgione, P.; Gagnon, A.; Godbout, C.; Joly, M.A.; Brunet, M.L. US Pat, 8912182 2014.
[76]
Smith, W.L.; Langenbach, R. Why there are two cyclooxygenase isozymes. J. Clin. Invest., 2001, 107(12), 1491-1495.
[http://dx.doi.org/10.1172/JCI13271] [PMID: 11413152]
[77]
Kundu, J.; Surh, Y. Inflammation: Gearing the journey to cancer. Mutat. Res. Rev. Mutat. Res., 2008, 659(1-2), 15-30.
[http://dx.doi.org/10.1016/j.mrrev.2008.03.002] [PMID: 18485806]
[78]
(a) Obermajer, N.; Muthuswamy, R.; Lesnock, J.; Edwards, R.P.; Kalinski, P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood, 2011, 118(20), 5498-5505.
[http://dx.doi.org/10.1182/blood-2011-07-365825] [PMID: 21972293];
(b) Holt, D.; Ma, X.; Kundu, N.; Fulton, A. Prostaglandin E2 (PGE2) suppresses natural killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol. Immunother., 2011, 60(11), 1577-1586.
[http://dx.doi.org/10.1007/s00262-011-1064-9] [PMID: 21681369]
[79]
Colucci, J.; Boyd, M.; Berthelette, C.; Chiasson, J-F.; Wang, Z.; Ducharme, Y.; Friesen, R.; Wrona, M.; Levesque, J-F.; Denis, D.; Mathieu, M-C.; Stocco, R.; Therien, A.G.; Clarke, P.; Rowland, S.; Xu, D.; Han, Y. Discovery of 4-[1-[([1-[4-(trifluoromethyl)benzyl]-1H-indol-7-yl]carbonyl)amino]cyclopropyl]benzoic acid (MF-766), a highly potent and selective EP4 antagonist for treating inflammatory pain. Bioorg. Med. Chem. Lett., 2010, 20(12), 3760-3763.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.065] [PMID: 20471829]
[80]
Bäurle, S.; Nagel, J.; Peters, O.; Bräuer, N.; Ter Laak, A.; Preusse, C.; Rottmann, A.; Heldmann, D.; Bothe, U.; Blume, T.; Zorn, L.; Walter, D.; Zollner, T.M.; Steinmeyer, A.; Langer, G. Identification of a benzimidazolecarboxylic acid derivative (BAY 1316957) as a potent and selective human prostaglandin E2 receptor subtype 4 (hEP4-R) antagonist for the treatment of endometriosis. J. Med. Chem., 2019, 62(5), 2541-2563.
[PMID: 30707023]
[81]
Yang, J.J.; Yu, W.W.; Hu, L.L.; Liu, W.J.; Lin, X.H.; Wang, W.; Zhang, Q.; Wang, P.L.; Tang, S.W.; Wang, X.; Liu, M.; Lu, W.; Zhang, H.K. Discovery and characterization of 1H-1,2,3-triazole derivatives as novel prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J. Med. Chem., 2020, 63(2), 569-590.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01269] [PMID: 31855426]
[82]
Gold, B.; Shevchenko, N.E.; Bonus, N.; Dudley, G.B.; Alabugin, I.V. Selective transition state stabilization via hyperconjugative and conjugative assistance: stereoelectronic concept for copper-free click chemistry. J. Org. Chem., 2012, 77(1), 75-89.
[http://dx.doi.org/10.1021/jo201434w] [PMID: 22077877]
[83]
Borst, P.; Elferink, R.O. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem., 2002, 71(1), 537-592.
[http://dx.doi.org/10.1146/annurev.biochem.71.102301.093055] [PMID: 12045106]
[84]
(a) Domenichini, A.; Adamska, A.; Falasca, M. ABC transporters as cancer drivers: Potential functions in cancer development. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(1), 52-60.
[http://dx.doi.org/10.1016/j.bbagen.2018.09.019] [PMID: 30268729];
(b) Fletcher, J.I.; Williams, R.T.; Henderson, M.J.; Norris, M.D.; Haber, M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist. Updat., 2016, 26, 1-9.
[http://dx.doi.org/10.1016/j.drup.2016.03.001] [PMID: 27180306];
(c) Li, W.; Zhang, H.; Assaraf, Y.G.; Zhao, K.; Xu, X.; Xie, J.; Yang, D.H.; Chen, Z.S. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist. Updat., 2016, 27, 14-29.
[http://dx.doi.org/10.1016/j.drup.2016.05.001] [PMID: 27449595]
[85]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[86]
Rabindran, S.K.; Ross, D.D.; Doyle, L.A.; Yang, W.; Greenberger, L.M. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res., 2000, 60(1), 47-50.
[PMID: 10646850]
[87]
Krapf, M.K.; Gallus, J.; Namasivayam, V.; Wiese, M. 2,4,6- substituted quinazolines with extraordinary inhibitory potency toward ABCG2. J. Med. Chem., 2018, 61, 7952-7976.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01011] [PMID: 30075623]
[88]
Krapf, M.K.; Gallus, J.; Vahdati, S.; Wiese, M. New inhibitors of breast cancer resistance protein (ABCG2) containing a 2,4- disubstituted pyridopyrimidine scaffold. J. Med. Chem., 2018, 61(8), 3389-3408.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01012] [PMID: 29547272]
[89]
Krapf, M.K.; Gallus, J.; Wiese, M. 4-anilino-2-pyridylquinazo-lines and-pyrimidines as highly potent and nontoxic inhibitors of breast cancer resistance protein (ABCG2). J. Med. Chem., 2017, 60(10), 4474-4495.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00441] [PMID: 28471656]
[90]
(a) Taylor, N.M.I.; Manolaridis, I.; Jackson, S.M.; Kowal, J.; Stahlberg, H.; Locher, K.P. Structure of the human multidrug transporter ABCG2. Nature, 2017, 546(7659), 504-509.
[http://dx.doi.org/10.1038/nature22345] [PMID: 28554189];
(b) Jackson, S.M.; Manolaridis, I.; Kowal, J.; Zechner, M.; Taylor, N.M.I.; Bause, M.; Bauer, S.; Bartholomaeus, R.; Bernhardt, G.; Koenig, B.; Buschauer, A.; Stahlberg, H.; Altmann, K.H.; Locher, K.P. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol., 2018, 25(4), 333-340.
[http://dx.doi.org/10.1038/s41594-018-0049-1] [PMID: 29610494]
[91]
Zhu, X.; Wong, I.L.K.; Chan, K.F.; Cui, J.; Law, M.C.; Chong, T.C.; Hu, X.; Chow, L.M.C.; Chan, T.H. Triazole bridged flavonoid dimers as potent, nontoxic, and highly selective breast cancer resistance protein (BCRP/ABCG2) inhibitors. J. Med. Chem., 2019, 62(18), 8578-8608.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00963] [PMID: 31465686]
[92]
Alvarez, A.I.; Real, R.; Pérez, M.; Mendoza, G.; Prieto, J.G.; Merino, G. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J. Pharm. Sci., 2010, 99(2), 598-617.
[http://dx.doi.org/10.1002/jps.21851] [PMID: 19544374]
[93]
Wong, I.L.K.; Zhu, X.; Chan, K.F.; Law, M.C.; Lo, A.M.Y.; Hu, X.; Chow, L.M.C.; Chan, T.H. Discovery of novel flavonoid dimers to reverse multidrug resistance protein 1 (MRP1, ABCC1) mediated drug resistance in cancers using a high throughput platform with ″click chemistry″. J. Med. Chem., 2018, 61(22), 9931-9951.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00834] [PMID: 30351934]
[94]
Soni, A.; Khurana, P.; Singh, T.; Jayaram, B. A DNA intercalation methodology for an efficient prediction of ligand binding pose and energetics. Bioinformatics, 2017, 33(10), 1488-1496.
[http://dx.doi.org/10.1093/bioinformatics/btx006] [PMID: 28073762]
[95]
(a) Braña, M.F.; Cacho, M.; Gradillas, A.; de Pascual-Teresa, B.; Ramos, A. Intercalators as anticancer drugs. Curr. Pharm. Des., 2001, 7(17), 1745-1780.
[http://dx.doi.org/10.2174/1381612013397113] [PMID: 11562309];
(b) Graves, D.E.; Velea, L.M. Intercalating binding of small molecules to nucleic acids. Curr. Org. Chem., 2000, 4, 915-929.
[http://dx.doi.org/10.2174/1385272003375978];
(c) Goftar, M.K.; Kor, N.M.; Kor, Z.M. DNA intercalators and using them as anticancer drugs. Int. J. Adv. Biol. Biomed. Res., 2014, 2(3), 811-822.
[96]
Strekowski, L.; Wilson, B. Noncovalent interactions with DNA: An overview. Mutat. Res., 2007, 623(1-2), 3-13.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.008] [PMID: 17445837]
[97]
a) Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 155, 117-134.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004] [PMID: 29885574];
(b) Eissa, I.H.; El-Naggar, A.M.; El-Sattar, N.E.A.A.; Youssef, A.S.A. Design, and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors. Anticancer. Agents Med. Chem., 2018, 18(2), 195-209.
[http://dx.doi.org/10.2174/1871520617666170710182405] [PMID: 28699490]
[98]
(a) Park, Y.S.; Shin, W.S.; Kim, C.S.; Ahn, C.M.; Qi, X.F.; Kim, S.K. Molecular and cellular toxicological profiling of DNA bis-intercalator, quinoxaline compounds: Echinomycin as the versatile lead. J. Biochem. Mol. Toxicol., 2018, 14, 9-18.;
(b) El-Adl, K.; Sakr, H.; Nasser, M.; Alswah, M.; Shoman, F.M.A. 5-(4-Methoxybenzylidene)thiazolidine-2,4-dione-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Arch. Pharm., 2020, 353(9), 2000079.
[http://dx.doi.org/10.1002/ardp.202000079] [PMID: 32515896]
[99]
Alswah, M.; Bayoumi, A.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H. Design, synthesis and cytotoxic evaluation of novel chalcone derivatives bearing triazolo[4,3-a]-quinoxaline moieties as potent anticancer agents with dual EGFR kinase and tubulin polymerization inhibitory effects. Molecules, 2017, 23(1), 48-53.
[http://dx.doi.org/10.3390/molecules23010048] [PMID: 29280968]
[100]
El-Adl, K.; El-Helby, A.G.A.; Sakr, H.; Elwan, A. [1,2,4]Triazolo[4,3- a]quinoxaline and [1,2,4]triazolo[4,3- a]quinoxaline-1-thiol-derived DNA intercalators: design, synthesis, molecular docking, in silico ADMET profiles and anti-proliferative evaluations. New J. Chem., 2021, 45(2), 881-897.
[http://dx.doi.org/10.1039/D0NJ02990D]
[101]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[102]
(a) Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F.X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A.O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate use of remdesivir for patients with severe covid-19. N. Engl. J. Med., 2020, 382(24), 2327-2336.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812];
(b) Wise, J. Covid-19: Remdesivir is recommended for authorisation by European Medicines Agency. BMJ, 2020, 369, m2610.
[http://dx.doi.org/10.1136/bmj.m2610] [PMID: 32601048]
[103]
Zhang, Y.; Lin, Y.; Hou, Q.; Liu, X.; Pricl, S.; Peng, L.; Xia, Y. Novel aryltriazole acyclic C -azanucleosides as anticancer candidates. Org. Biomol. Chem., 2020, 18(47), 9689-9699.
[http://dx.doi.org/10.1039/D0OB02164D] [PMID: 33232421]
[104]
Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.004] [PMID: 29649496]
[105]
Hernández, D.; Boto, A. Nucleoside analogues: Synthesis and biological properties of azabucleoside derivatives. Eur. J. Org. Chem., 2014, 2014(11), 2201-2220.
[http://dx.doi.org/10.1002/ejoc.201301731]
[106]
Shamsi, F.; Rizvi, M.M.A.; Abid, M. The upshot of PI3K inhibitors as anticancer arsenal: A short review. Curr. Bioact. Compd., 2018, 14(4), 331-346.
[http://dx.doi.org/10.2174/1573407213666170609075351]
[107]
(a) Lavanya, V.; Mohamed Adil, A.A.; Ahmed, N.; Rishi, A.K.; Jamal, S. Small molecule inhibitors as emerging cancer therapeutics. Integr. Cancer Sci. Ther., 2014, 1, 39-46.;
(b) Abid, M.; Shamsi, F.; Azam, A. Ruthenium complexes: An emerging ground to the development of metallopharmaceuticals for cancer therapy. Mini Rev. Med. Chem., 2016, 10, 772-786.
[108]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[109]
(a) Morris, C.D.; Rose, A.; Curwen, J.; Hughes, A.M.; Wilson, D.J.; Webb, D.J. Specific inhibition of the endothelin A receptor with ZD4054: clinical and pre-clinical evidence. Br. J. Cancer, 2005, 92(12), 2148-2152.
[http://dx.doi.org/10.1038/sj.bjc.6602676] [PMID: 15956965];
(b) Ahmad, I. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur. J. Med. Chem., 2015, 102, 375-386.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.010] [PMID: 26301554]
[110]
(a) Dofe, V.S.; Sarkate, A.P.; Azad, R.; Gill, C.H. Ultrasound-assisted synthesis and docking study of novel chromone-thiadiazole integrated phosphonate derivatives targeting topoisomerase II as anticancer agents. Res. Chem. Intermed., 2017, 43, 7331-7345.
[http://dx.doi.org/10.1007/s11164-017-3078-1];
(b) Arafa, R.K.; Hegazy, G.H.; Piazza, G.A.; Abadi, A.H. Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur. J. Med. Chem., 2013, 63, 826-832.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.008] [PMID: 23584545]
[111]
Khanam, R.; Ahmad, K.; Hejazi, I.I.; Siddique, I.A.; Kumar, V.; Bhat, A.R.; Azam, A.; Athar, F. Inhibitory growth evaluation and apoptosis induction in MCF-7 cancer cells by new 5-aryl-2-butylthio-1,3,4-oxadiazole derivatives. Cancer Chemother. Pharmacol., 2017, 80(5), 1027-1042.
[http://dx.doi.org/10.1007/s00280-017-3414-6] [PMID: 28815320]
[112]
(a) Czernecki, S.; Valery, J.M. Sugar-modified pyrimidine nucleoside analogs with potential antiviral Activity in carbohydrate drug design; Witczak, Z.J; Nieforth, N.A., Ed.; Dekker, New York, 1997, pp. 495-522.;
(b) Ferrero, M.; Gotor, V. Synthesis and antiviral activities of novel purinyl-and pyrimidinylcarbanucleosides derived from indan. Chem. Rev., 2000, 100, 4319-4348.
[http://dx.doi.org/10.1021/cr000446y] [PMID: 11749350];
(c) Ichikawa, E.; Kato, K. Sugar-modified nucleosides in past 10 years, a review. Curr. Med. Chem., 2001, 8(4), 385-423.
[http://dx.doi.org/10.2174/0929867013373471] [PMID: 11172696];
(d) Pathak, T. Azidonucleosides: synthesis, reactions, and biological properties. Chem. Rev., 2002, 102(5), 1623-1668.
[http://dx.doi.org/10.1021/cr0104532] [PMID: 11996546];
(e) De Clercq, E. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002, 1(1), 13-25.
[http://dx.doi.org/10.1038/nrd703] [PMID: 12119605];
(f) De Clercq, E. Antiviral agents active against influenza A viruses. Nat. Rev. Microbiol., 2004, 2, 704-720.
[PMID: 15372081];
(g) Galmarini, C.; Popowycz, F.; Joseph, B. Cytotoxic nucleoside analogues: different strategies to improve their clinical efficacy. Curr. Med. Chem., 2008, 15(11), 1072-1082.
[http://dx.doi.org/10.2174/092986708784221449] [PMID: 18473803];
(h) Hocek, M.; Hocek, M.; Kocovský, P. C-nucleosides: Synthetic strategies and biological applications. Chem. Rev., 2009, 109(12), 6729-6764.
[http://dx.doi.org/10.1021/cr9002165] [PMID: 19761208]
[113]
(a) Merino, P. Heterocyclic nucleosides: Chemical synthesis and biological properties. Curr. Med. Chem., 2006, 13(5), 539-545.
[http://dx.doi.org/10.2174/092986706776055779] [PMID: 16515520];
(b) Chiacchio, U.; Padwa, A.; Romeo, G. A convergent stereoselective synthesis of quinolizidines and indolizidines: Chemoselective coupling of -hydroxymethyl-substituted allylic silanes with imine. Curr. Org. Chem., 2009, 13, 422-447.
[http://dx.doi.org/10.2174/138527209787582268];
(c) Romeo, G.; Chiacchio, U.; Corsaro, A.; Merino, P. Chemical synthesis of heterocyclic-sugar nucleoside analogues. Chem. Rev., 2010, 110(6), 3337-3370.
[http://dx.doi.org/10.1021/cr800464r] [PMID: 20232792]
[114]
Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiacchio, U.; Saita, M.G.; Iannazzo, D.; Piperno, A.; Romeo, G. An efficient approach to enantiomeric isoxazolidinyl analogues of tiazofurin based on nitrone cycloadditions. Tetrahedron Asymmetry, 2005, 16(23), 3865-3876.
[http://dx.doi.org/10.1016/j.tetasy.2005.11.004]
[115]
Romeo, R.; Carnovale, C.; Giofrè, S.V.; Romeo, G.; Macchi, B.; Frezza, C.; Marino-Merlo, F.; Pistarà, V.; Chiacchio, U. Truncated phosphonated C-1′-branched N,O-nucleosides: A new class of antiviral agents. Bioorg. Med. Chem., 2012, 20(11), 3652-3657.
[http://dx.doi.org/10.1016/j.bmc.2012.03.047] [PMID: 22549138]
[116]
(a) Riley, T.A.; Larson, S.B.; Avery, T.L.; Finch, R.A.; Robins, R.K. 1,2,4-Diazaphosphole nucleosides. Synthesis, structure, and antitumor activity of nucleosides with a. lambda.3 phosphorus atom. J. Med. Chem., 1990, 33(2), 572-576.
[http://dx.doi.org/10.1021/jm00164a016] [PMID: 1967649];
(b) Wang, P.; Hollecker, L.; Pankiewicz, K.W.; Patterson, S.E.; Whitaker, T.; McBrayer, T.R.; Tharnish, P.M.; Sidwell, R.W.; Stuyver, L.J.; Otto, M.J.; Schinazi, R.F.; Watanabe, K.A. Synthesis of N3, 5‘-Cyclo-4-(β- D -ribofuranosyl)- v ic -triazolo[4,5- b]pyridin-5-one, a novel compound with anti-hepatitis C virus activity. J. Med. Chem., 2004, 47(24), 6100-6103.
[http://dx.doi.org/10.1021/jm0401210] [PMID: 15537363]
[117]
Zhou, L.; Amer, A.; Korn, M.; Burda, R.; Balzarini, J.; De Clercq, E.; Kern, E.R.; Torrence, P.F. Synthesis and antiviral activities of 1,2,3-triazole functionalized thymidines: 1,3-dipolar cycloaddition for efficient regioselective diversity generation. Antivir. Chem. Chemother., 2005, 16(6), 375-383.
[http://dx.doi.org/10.1177/095632020501600604] [PMID: 16331842]
[118]
Singhal, N.; Sharma, P.K.; Kumar, N.; Dudhe, R. Chem. Biol. Interact., 2011, 1, 338-348.
[119]
Romeo, R.; Giofrè, S.V.; Carnovale, C.; Chiacchio, M.A.; Campisi, A.; Mancuso, R.; Cirmi, S.; Navarra, M. Synthesis and biological activity of triazole-appended N,O-nucleosides, synthesis and biological activity of triazole-appended N,O-Nucleosides. Eur. J. Org. Chem., 2014, 2014(25), 5442-5447.
[http://dx.doi.org/10.1002/ejoc.201402106]
[120]
(a) Spiteri, C.; Moses, J.E. Copper-catalyzed azide-alkyne cycloaddition: regioselective synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Angew. Chem. Int. Ed., 2010, 49(1), 31-33.
[http://dx.doi.org/10.1002/anie.200905322] [PMID: 19921729];
(b) Spiteri, C.; Moses, J.E. Kupferkatalysierte Azid-Alkin-Cycloadditionen: regioselektive Synthese von 1,4,5-trisubstituierten 1,2,3-Triazolen. Angew. Chem., 2010, 122(1), 33-36.
[http://dx.doi.org/10.1002/ange.200905322]
[121]
(a) Campisi, A.; Spatuzza, M.; Russo, A.; Raciti, G.; Vanella, A.; Stanzani, S.; Pellitteri, R. Expression of tissue transglutaminase on primary olfactory ensheathing cells cultures exposed to stress conditions. Neurosci. Res., 2012, 72(4), 289-295.
[http://dx.doi.org/10.1016/j.neures.2011.12.008] [PMID: 22222252];
(b) Campisi, A.; Caccamo, D.; Li Volti, G.; Currò, M.; Parisi, G.; Avola, R.; Vanella, A.; Ientile, R. Glutamate-evoked redox state alterations are involved in tissue transglutaminase upregulation in primary astrocyte cultures. FEBS Lett., 2004, 578(1-2), 80-84.
[http://dx.doi.org/10.1016/j.febslet.2004.10.074] [PMID: 15581620]
[122]
Navarra, M.; Celano, M.; Maiuolo, J.; Schenone, S.; Botta, M.; Angelucci, A.; Bramanti, P.; Russo, D. Antiproliferative and pro-apoptotic effects afforded by novel Src-kinase inhibitors in human neuroblastoma cells. BMC Cancer, 2010, 10(1), 602-614.
[http://dx.doi.org/10.1186/1471-2407-10-602] [PMID: 21050441]
[123]
a) Henkel, T.; Brunne, R.M.; Müller, H.; Reichel, F. Statistical investigation into the structural complementarity of natural products and synthetic compounds. Angew. Chem. Int. Ed., 1999, 38(5), 643-647.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990301)38:5<643:AID-ANIE643>3.0.CO;2-G] [PMID: 29711552];
(b) Zhao, P.P.; Zhou, X.F.; Dai, J.J.; Xu, H.J. Catalyst-free reductive amination of aromatic aldehydes with ammonium formate and Hantzsch ester. Org. Biomol. Chem., 2014, 12(45), 9092-9096.
[http://dx.doi.org/10.1039/C4OB01590H] [PMID: 25295463]
[124]
Fletcher, J.T.; Sobczyk, J.M.; Gwazdacz, S.C.; Blanck, A.J. Antimicrobial 1,3,4-trisubstituted-1,2,3-triazolium salts. Bioorg. Med. Chem. Lett., 2018, 28(20), 3320-3323.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.011] [PMID: 30219525]
[125]
Kapadiya, K.; Kavadia, K.; Gohel, J.; Khunt, R. Regioselective synthesis of triazolo[3,4-e]purine derivatives and their anti-cancer activity against NCI-60 cell-lines. Folia Med., 2021, 63(2), 213-220.
[http://dx.doi.org/10.3897/folmed.63.e52891] [PMID: 33932011]
[126]
Charvieux, A.; Moigne, L.L.; Borrego, L.; Duguet, N.; Metay, E. Solvent-free N-alkylation of amides with alcohols catalyzed by nickel on ailica-alumina. Eur. J. Org. Chem., 2019, 40, 6842-6846.
[http://dx.doi.org/10.1002/ejoc.201901291]
[127]
Ben Haj Salah, K.; Das, S.; Ruiz, N.; Andreu, V.; Martinez, J.; Wenger, E.; Amblard, M.; Didierjean, C.; Legrand, B.; Inguimbert, N. How are 1,2,3-triazoles accommodated in helical secondary structures? Org. Biomol. Chem., 2018, 16(19), 3576-3583.
[http://dx.doi.org/10.1039/C8OB00686E] [PMID: 29693098]
[128]
Gondaliya, B.L.; Kapadiya, K.M. Efficient Green Approach for the synthesis of 1,2,3-Triazoles using click chemistry through cycloaddition reaction: synthesis and cytotoxic study. Polycycl. Aromat. Compd., 2023, 43(1), 686-698.
[http://dx.doi.org/10.1080/10406638.2021.2019804]
[129]
Paul, M.; Gafter-Gvili, A.; Fraser, A.; Leibovici, L. The anti-cancer effects of quinolone antibiotics? Eur. J. Clin. Microbiol. Infect. Dis., 2007, 26(11), 825-831.
[http://dx.doi.org/10.1007/s10096-007-0375-4] [PMID: 17701431]
[130]
Kuntala, N.; Telu, J.R.; Banothu, V.; Nallapati, S.B.; Anireddy, J.S.; Pal, S. Novel benzoxepine-1,2,3-triazole hybrids: synthesis and pharmacological evaluation as potential antibacterial and anticancer agents. MedChemComm, 2015, 6(9), 1612-1619.
[http://dx.doi.org/10.1039/C5MD00224A]
[131]
Suryapeta, S.; Papigani, N.; Banothu, V.; Dubey, P.K.; Mukkanti, K.; Pal, S. Synthesis, biological evaluation, and docking study of a series of 1,4‐ disubstituted 1,2,3‐triazole derivatives with an indole‐;triazole‐peptide conjugate. J. Heterocycl. Chem., 2020, 57(8), 3126-3141.
[http://dx.doi.org/10.1002/jhet.4020]
[132]
Agarwal, M.; Singh, V.; Sharma, S.K.; Sharma, P.; Ansari, M.Y.; Jadav, S.S.; Yasmin, S.; Sreenivasulu, R.; Hassan, M.Z.; Saini, V.; Ahsan, M.J. Design and synthesis of new 2,5-disubstituted-1,3,4-oxadiazole analogues as anticancer agents. Med. Chem. Res., 2016, 25(10), 2289-2303.
[http://dx.doi.org/10.1007/s00044-016-1672-1]
[133]
Clark, R.L.; Pessolano, A.A.; Witzel, B.; Lanza, T.; Shen, T.Y.; Van Arman, C.G.; Risley, E.A. 2-(Substituted phenyl)oxazolo[4,5-b]pyridines and 2-(substituted phenyl)oxazolo[5,4-b]pyridines as nonacidic antiinflammatory agents. J. Med. Chem., 1978, 21(11), 1158-1162.
[http://dx.doi.org/10.1021/jm00209a014] [PMID: 102794]
[134]
Katsuwa, S.; Sakiya, M.; Hayashi, K.; Maeda, N.; Maenaka, K.; Ichikawa, S.J.P.JP 2018-87173 Malignant brain tumor therapeutic agent. Japanese Patent Application Laid-Open No. 2018 , 87173. (P2018-87173A), 2018
[135]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005 ] [PMID: 31300317]
[136]
Sireesha, R.; Tej, M.B.; Poojith, N.; Sreenivasulu, R.; Musuluri, M.; Subbarao, M. Synthesis of substituted aryl incorporated oxazolo[4,5-b] pyridine-triazole derivates: Anticancer evaluation and molecular docking studies. Polycycl. Aromat. Compd., 2023, 43(1), 915-932.
[http://dx.doi.org/10.1080/10406638.2021.2021256]
[137]
McLean, J.E.; Neidhardt, E.A.; Grossman, T.H.; Hedstrom, L. Multiple inhibitor analysis of the brequinar and leflunomide binding sites on human dihydroorotate dehydrogenase. Biochemistry, 2001, 40(7), 2194-2200.
[http://dx.doi.org/10.1021/bi001810q] [PMID: 11329288]
[138]
Ladds, M.J.G.W.; van Leeuwen, I.M.M.; Drummond, C.J.; Chu, S.; Healy, A.R.; Popova, G.; Pastor Fernández, A.; Mollick, T.; Darekar, S.; Sedimbi, S.K.; Nekulova, M.; Sachweh, M.C.C.; Campbell, J.; Higgins, M.; Tuck, C.; Popa, M.; Safont, M.M.; Gelebart, P.; Fandalyuk, Z.; Thompson, A.M.; Svensson, R.; Gustavsson, A.L.; Johansson, L.; Färnegårdh, K.; Yngve, U.; Saleh, A.; Haraldsson, M.; D’Hollander, A.C.A.; Franco, M.; Zhao, Y.; Håkansson, M.; Walse, B.; Larsson, K.; Peat, E.M.; Pelechano, V.; Lunec, J.; Vojtesek, B.; Carmena, M.; Earnshaw, W.C.; McCarthy, A.R.; Westwood, N.J.; Arsenian-Henriksson, M.; Lane, D.P.; Bhatia, R.; McCormack, E.; Laín, S. A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage. Nat. Commun., 2018, 9(1), 1107-1120.
[http://dx.doi.org/10.1038/s41467-018-03441-3] [PMID: 29549331]
[139]
Zuo, Z.; Liu, X.; Qian, X.; Zeng, T.; Sang, N.; Liu, H.; Zhou, Y.; Tao, L.; Zhou, X.; Su, N.; Yu, Y.; Chen, Q.; Luo, Y.; Zhao, Y. Bifunctional naphtho [2,3-d][1,2,3]triazole-4,9-dione compounds exhibit antitumor effects in vitro and in vivo by inhibiting dihydroorotate dehydrogenase and inducing reactive oxygen species production. J. Med. Chem., 2020, 63(14), 7633-7652.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00512] [PMID: 32496056]
[140]
Welleman, I.M.; Hoorens, M.W.H.; Feringa, B.L.; Boersma, H.H. Szymański, W. Photoresponsive molecular tools for emerging applications of light in medicine. Chem. Sci., 2020, 11(43), 11672-11691.
[http://dx.doi.org/10.1039/D0SC04187D ] [PMID: 34094410]
[141]
Huang, X.; Li, T. Recent progress in the development of molecular-scale electronics based on photoswitchable molecules. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(3), 821-848.
[http://dx.doi.org/10.1039/C9TC06054E]
[142]
Zhang, Z.Y.; He, Y.; Wang, Z.; Xu, J.; Xie, M.; Tao, P.; Ji, D.; Moth-Poulsen, K.; Li, T. Photochemical phase transitions enable coharvesting of photon energy and ambient heat for energetic molecular solar thermal batteries that upgrade thermal energy. J. Am. Chem. Soc., 2020, 142(28), 12256-12264.
[http://dx.doi.org/10.1021/jacs.0c03748] [PMID: 32551567]
[143]
a) Rastogi, S.K.; Zhao, Z.; Gildner, M.B.; Shoulders, B.A.; Velasquez, T.L.; Blumenthal, M.O.; Wang, L.; Li, X.; Hudnall, T.W.; Betancourt, T.; Du, L.; Brittain, W.J. Synthesis, optical properties and in vitro cell viability of novel spiropyrans and their photostationary states. Tetrahedron, 2021, 80, 131854-131859.
[http://dx.doi.org/10.1016/j.tet.2020.131854];
(b) Rastogi, S.K.; Zhao, Z.; Barrett, S.L.; Shelton, S.D.; Zafferani, M.; Anderson, H.E.; Blumenthal, M.O.; Jones, L.R.; Wang, L.; Li, X.; Streu, C.N.; Du, L.; Brittain, W.J. Photoresponsive azo-combretastatin A-4 analogues. Eur. J. Med. Chem., 2018, 143, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.012] [PMID: 29172077]
[144]
Baroncini, M.; Ragazzon, G.; Silvi, S.; Venturi, M.; Credi, A. The eternal youth of azobenzene: New photoactive molecular and supramolecular devices. Pure Appl. Chem., 2015, 87(6), 537-545.
[http://dx.doi.org/10.1515/pac-2014-0903]
[145]
Fang, D.; Zhang, Z.Y.; Shangguan, Z.; He, Y.; Yu, C.; Li, T. (Hetero)arylazo-1,2,3-triazoles: “clicked” photoswitches for versatile functionalization and electronic decoupling. J. Am. Chem. Soc., 2021, 143(36), 14502-14510.
[http://dx.doi.org/10.1021/jacs.1c08704] [PMID: 34476949]
[146]
Oscurato, S.L.; Salvatore, M.; Maddalena, P.; Ambrosio, A. From nanoscopic to macroscopic photo-driven motion in azobenzene-containing materials. Nanophotonics, 2018, 7(8), 1387-1422.
[http://dx.doi.org/10.1515/nanoph-2018-0040]
[147]
Pianowski, Z.L. Recent implementations of molecular photoswitches into smart materials and biological systems. Chemistry, 2019, 25(20), 5128-5144.
[http://dx.doi.org/10.1002/chem.201805814] [PMID: 30614091]
[148]
Crespi, S.; Simeth, N.A.; König, B. Heteroaryl azo dyes as molecular photoswitches. Nat. Rev. Chem., 2019, 3(3), 133-146.
[http://dx.doi.org/10.1038/s41570-019-0074-6]
[149]
Tuck, J.R.; Tombari, R.J.; Yardeny, N.; Olson, D.E. A modular approach to arylazo-1,2,3-triazole photoswitches. Org. Lett., 2021, 23(11), 4305-4310.
[http://dx.doi.org/10.1021/acs.orglett.1c01230] [PMID: 34019429]
[150]
(a) Meldal, M.; Diness, F. Recent fascinating aspects of the CuAAC Click reaction. Trends Chem., 2020, 2(6), 569-584.
[http://dx.doi.org/10.1016/j.trechm.2020.03.007];
(b) Kaur, J.; Saxena, M.; Rishi, N. An overview of recent advances in biomedical applications of Click chemistry. Bioconjug. Chem., 2021, 32(8), 1455-1471.
[http://dx.doi.org/10.1021/acs.bioconjchem.1c00247] [PMID: 34319077]
[151]
Jankovič, D.; Virant, M.; Gazvoda, M. Copper-catalyzed azide-alkyne cycloaddition of hydrazoic acid formed in situ from sodium azide affords 4-monosubstituted-1,2,3-triazoles. J. Org. Chem., 2022, 87(6), 4018-4028.
[http://dx.doi.org/10.1021/acs.joc.1c02775] [PMID: 35148087]
[152]
Dimroth, O.; Fester, G. Triazol and Tetrazol from nitrogen hydrogen acid., Ber. Dtsch. Chem. Ges., 1910, 43, 2219-2223. (b) Hartzel, L. W.; Benson, F. R., Synthesis of 4-alkyl-V-triazoles from acetylenic compounds and hydrogen azide. J. Am. Chem. Soc., 1954, 76, 667-670.
[153]
Golas, P.L.; Tsarevsky, N.V.; Matyjaszewski, K. Structure-reactivity correlation in “Click” chemistry: substituent effect on azide reactivity. Macromol. Rapid Commun., 2008, 29(12-13), 1167-1171.
[http://dx.doi.org/10.1002/marc.200800118]
[154]
(a) Audrieth, L.F. Hydrazoic acid, and its inorganic derivatives. Chem. Rev., 1934, 15(2), 169-224.
[http://dx.doi.org/10.1021/cr60051a002];
(b) Breton, G.W.; Kropp, P.J.; Banert, K. Hydrazoic acid in encyclopedia of reagents for organic synthesis; Wiley, 2013, pp. 1-8.
[155]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy