Skip to main content
Log in

On the \(p\)-Adic Properties of \(2\)-Sected Sums Involving Binomial Coefficients

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

For a prime \(p\), we determine the \(p\)-adic order of certain lacunary sums involving binomial coefficients. After forming sequences of the sums, we use various techniques, recurrence relations, multisecting ordinary generating functions, periodicity of linear sequences, divisibility sequences, Lucas and their companion sequences, and a \(2\)-adic analytic technique among other methods. We focus on \(2\)-sected sums and suggest extensions to other sections. We determine the rate of convergence of some subsequences to \(0\) or \(1\) in \( {\mathbb Z}_p \). The discovery phase of finding exact \(p\)-adic orders is followed by a series of suggestions in order to lead us to the predicted results, and several examples are offered to illustrate and highlight the differences. The current paper provides a significant extension to a method introduced by the author to fully characterize the \(p\)-adic orders of Fibonacci and Lucas numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Alkan, “Problem 10473,” Amer. Math. Monthly 102, p. 745 (1995), solution: 104, p. 371 (1997).

    MathSciNet  Google Scholar 

  2. J.-P. Allouche and J.O. Shallit, Automatic Sequences: Theory, Applications, Generalizations (Cambridge University Press, 2003).

    Book  MATH  Google Scholar 

  3. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions (D. Reidel, Publishing Co., Dordrecht, enlarged edition, 1974).

    Book  MATH  Google Scholar 

  4. D. M. Davis, “Divisibility by 2 of partial Stirling numbers,” Funct. Approx. Comm. Math. 49 (1), 29–56 (2013).

    MathSciNet  MATH  Google Scholar 

  5. K. Dilcher, “Congruences for a class of alternating lacunary sums of binomial coefficients,” J. Integer Sequen. 10, Article 07.10.1, 1–10 (2007).

    MathSciNet  MATH  Google Scholar 

  6. D. Djukić, V. Janković, I. Matić and N. Petrović, The IMO Compendium A Collection of Problems Suggested for the International Mathematical Olympiads: 1959–2004 (Springer, New York, 2006).

    MATH  Google Scholar 

  7. G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Mathematical Surveys and Monographs, Vol. 104 (American Mathematical Society, 2003).

    MATH  Google Scholar 

  8. I. Gessel and T. Lengyel, “On the order of Stirling numbers and alternating binomial coefficient sums,” Fibonacci Quart. 39, 444–454 (2001).

    MathSciNet  MATH  Google Scholar 

  9. A. Granville, “Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers,” in Organic Mathematics (Burnaby, BC, 1995), vol. 20 of CMS Conf. Proc., 253–276, Electronic version (a dynamic survey): http://www.dms.umontreal.ca/~andrew/Binomial/ (Amer. Math. Soc., Providence, RI, 1997).

    Google Scholar 

  10. S. L. Greitzer, International Mathematical Olympiads, 1959-1977 (The Mathematical Assoc. of America New Mathematical Library, 1978).

    Book  MATH  Google Scholar 

  11. F. Howard and R. Witt, “Lacunary sums of binomial coefficients,” in Applications of Fibonacci Numbers, Vol. 7 (Graz, 1996), 185–195 (Kluwer Acad. Publ., Dordrecht, 1998).

    Chapter  MATH  Google Scholar 

  12. M. Kauers and P. Paule, The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates, Texts and Monographs in Symbolic Computation (Springer, 2011).

    Book  MATH  Google Scholar 

  13. Y. H. H. Kwong, “Periodicities of a class of infinite integer sequences modulo \(M\),” J. Number Theory 31, 64–79 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Lengyel, “The order of the Fibonacci and Lucas numbers,” Fibonacci Quart. 33 (3), 234–239 (1995).

    MathSciNet  MATH  Google Scholar 

  15. T. Lengyel, “Divisibility properties by recurrence relations,” in Advances in Difference Equations (Veszprém, 1995), 391–397 (Gordon and Breach, Amsterdam, 1997).

    Google Scholar 

  16. T. Lengyel, “Difference equations and divisibility properties of sequences,” J. Difference Equ. Appl. 8, 741–753 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Lengyel, “On the order of lacunary sums of binomial coefficients,” Integers 3, #A3, 10 pp. (2003).

    MathSciNet  MATH  Google Scholar 

  18. T. Lengyel, “Divisibility properties by multisection,” Fibonacci Quart. 41 (1), 72–79 (2003).

    MathSciNet  MATH  Google Scholar 

  19. T. Lengyel, “On \(p\)-adic properties of some Fibonacci and Lucas numbers,” Integers 19, #A63, 26 pp. (2019).

    MathSciNet  MATH  Google Scholar 

  20. T. Lengyel, “Divisibility properties of some curiously defined sequences,” J. Comb. Number Theory 12 (1), 35–49 (2021).

    MathSciNet  MATH  Google Scholar 

  21. N. A. Loehr and T. S. Michael, “The combinatorics of evenly spaced binomial coefficients,” Integers 18, #A89, 20 pp. (2018).

    MathSciNet  MATH  Google Scholar 

  22. OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, published electron. at https://oeis.org (2021).

  23. S. Plouffe, 1031 Generating Functions, Appendix to Thesis (Montreal, 1992).

    Google Scholar 

  24. P. Ribenboim, The Little Book of Big Primes (Springer, New York-Berlin, 1991).

    Book  MATH  Google Scholar 

  25. J. Riordan, Combinatorial Identities (Wiley, New York, 1968).

    MATH  Google Scholar 

  26. E. Rowland and R. Yassawi, “\(p\)-adic assymptotic properties of constant-recursive sequences,” Indagationes Math. 28 (1), 205–220 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  27. Z. Shu, and J.-Y. Yao, “Analytic functions over \( \mathbb Z _p\) and \(p\)-regular sequences,” C. R. Acad. Sci. Paris, Ser. I 349, 947–952 (2011).

    Article  MATH  Google Scholar 

  28. L. Somer, “Divisibility of terms in Lucas sequences by their subscripts,” in Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 515–525 (Kluwer Acad. Publ., Dordrecht, 1993).

    Chapter  MATH  Google Scholar 

  29. L. Somer, “Divisibility of terms in Lucas sequences of the second kind by their subscripts,” in Applications of Fibonacci Numbers, Vol. 6 (Pullman, WA, 1994), 473–486 (Kluwer Acad. Publ., Dordrecht, 1996).

    Chapter  MATH  Google Scholar 

  30. Z.-W. Sun, “On the sum \(\sum_{k\equiv r \pmod m} {n\choose k}\) and related congruences,” Israel J. Math. 128, 135–156 (2002).

    Article  MathSciNet  Google Scholar 

  31. Z.-W. Sun, “Fleck quotient and Bernoulli numbers,” http://arXiv.org/pdf/math/0608328v1, 38 pp. (2006).

  32. Z.-W. Sun and R. Tauraso, “Congruences for sums of binomial coefficients,” J. Number Theory 126 (2), 287–296 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  33. Z.-W. Sun and D. Wan, “On Fleck quotients,” Acta Arith. 127 (4), 337–363 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Tollisen and T. Lengyel, “A congruential identity and the \(2\)-adic order of lacunary sums of binomial coefficients,” Integers 4, #A4, 8 pp. (2004).

    MathSciNet  MATH  Google Scholar 

  35. P. T. Young, “\(p\)-adic congruences for generalized Fibonacci sequences,” Fibonacci Quart. 32 (1), 2–10 (1994).

    MathSciNet  MATH  Google Scholar 

  36. P. T. Young, “On a class of congruences for Lucas sequences,” in Applications of Fibonacci Numbers, Vol. 6 (Pullman, WA, 1994), 537–544 (Kluwer Acad. Publ., Dordrecht, 1996).

    Chapter  Google Scholar 

  37. P. T. Young, “\(2\)-adic valuations of generalized Fibonacci numbers of odd order,” Integers 18, #A1, 13 pp. (2018).

    MathSciNet  Google Scholar 

  38. L. Verde-Star, “Sections and lacunary sums of linearly recurrent sequences,” Adv. Appl. Math. 23 (2), 176–197 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Winkler, Mathematical Mind–Benders (A K Peters, Ltd., Wellesley, MA, 2007).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lengyel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lengyel, T. On the \(p\)-Adic Properties of \(2\)-Sected Sums Involving Binomial Coefficients. P-Adic Num Ultrametr Anal Appl 15, 23–47 (2023). https://doi.org/10.1134/S2070046623010028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046623010028

Keywords

Navigation