Skip to main content
Log in

log-Coulomb Gases in the Projective Line of a \(p\)-Field

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

This article extends recent results on log-Coulomb gases in a \(p\)-field \(K\) (i.e., a nonarchimedean local field) to those in its projective line \(\mathbb{P}^1(K)\), where the latter is endowed with the \(PGL_2\)-invariant Borel probability measure and spherical metric. Our first main result is an explicit combinatorial formula for the canonical partition function of log-Coulomb gases in \(\mathbb{P}^1(K)\) with arbitrary charge values. Our second main result is called the “\((q+1)\)th Power Law”, which relates the grand canonical partition functions for one-component gases in \(\mathbb{P}^1(K)\) (where all particles have charge 1) to those in the open and closed unit balls of \(K\) in a simple way. The final result is a quadratic recurrence for the canonical partition functions for one-component gases in both unit balls of \(K\) and in \(\mathbb{P}^1(K)\). In addition to efficient computation of the canonical partition functions, the recurrence provides their “\(q\to 1\)” limits and “\(q\mapsto q^{-1}\)” functional equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Bocardo-Gaspar, H. García-Compeán and W. A. Zúñiga Galindo, “Regularization of \(p\)-adic string amplitudes, and multivariate local zeta functions,” Lett. Math. Phys. 109 (5), 1167–1204 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Buhler, D. Goldstein, D. Moews and J. Rosenberg, “The probability that a random monic \(p\)-adic polynomial splits,” Exper. Math. 15 (1), 21–32 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Denef and D. Meuser, “A functional equation of Igusa’s local zeta function,” Amer. J. Math. 113 (6), 1135–1152 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Classics in Mathematics (Springer-Verlag, Berlin, 2001).

    Book  MATH  Google Scholar 

  5. A. Fan, S. Fan, L. Liao and Y. Wang, “On minimal decomposition of \(p\)-adic homographic dynamical systems,” Adv. Math. 257, 92–135 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. J. Forrester, Log-Gases and Random Matrices, London Mathematical Society Monographs Series, Vol. 34 (Princeton University Press, Princeton, NJ, 2010).

    Book  MATH  Google Scholar 

  7. P. Fili and C. Petsche, “Energy integrals over local fields and global height bounds,” Int. Math. Res. Not. IMRN 5, 1278–1294 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. J. Forrester and S. O. Warnaar, “The importance of the Selberg integral,” Bull. Amer. Math. Soc. (N.S.) 45 (4), 489–534 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Jokela, M. Järvinen and E. Keski-Vakkuri, “The partition function of a multi-component Coulomb gas on a circle,” J. Phys. A 41 (14), 145003, 12 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Kardar, Statistical Physics of Particles (Cambridge University Press, 2007).

    Book  MATH  Google Scholar 

  11. F. Loeser, “Fonctions zêta locales d’igusa à plusieurs variables, intégration dans les fibres, et discriminants,” Annales scientif. de l’École Normale Supérieure 4e série, 22 (3), 435–471 (fr) (1989).

    MATH  Google Scholar 

  12. P. McCullagh, “What is a statistical model?,” Ann. Statist. 30 (5), 1225–1310 (2002). With comments and a rejoinder by the author.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Lal Mehta, Random Matrices, third ed., Pure and Applied Mathematics (Amsterdam), Vol. 142 (Elsevier/Academic Press, Amsterdam, 2004).

    MATH  Google Scholar 

  14. B. Rider, C. D. Sinclair and Y. Xu, “A solvable mixed charge ensemble on the line: global results,” Probab. Theory Rel. Fields 155 (1-2), 127–164 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. S. Rumely, “Capacity theory on algebraic curves,” Lecture Notes in Mathematics, Vol. 1378 (Springer-Verlag, Berlin, 1989).

    MATH  Google Scholar 

  16. J. J. Rodríguez-Vega and W. A. Zúñiga Galindo, “Elliptic pseudodifferential equations and Sobolev spaces over \(p\)-adic fields,” Pacific J. Math. 246 (2), 407–420 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Serfaty, Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), (Zürich, 2015).

    Book  MATH  Google Scholar 

  18. C. D. Sinclair, “The partition function of multicomponent log-gases,” J. Phys. A 45 (16), 165002, 18 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. D. Sinclair, “Non-archimedean electrostatics, \(p\)-adic analysis, arithmetic and singularities,” Contemp. Math. 778, 279–311 (Amer. Math. Soc., Providence, RI, 2022).

    Article  Google Scholar 

  20. C. Voll, “Functional equations for zeta functions of groups and rings,” Ann. Math. 172 (2), 1181–1218 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Webster, “\(\log\)-Coulomb gas with norm-density in \(p\)-fields,” \(p\)-Adic Numbers Ultrametric Anal. Appl. 13 (1), 1–43 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Weil, Basic Number Theory, Classics in Mathematics (Springer-Verlag, Berlin, 1995).

    MATH  Google Scholar 

  23. W. A. Zúñiga Galindo and S. M. Torba, “Non-Archimedean Coulomb gases,” J. Math. Phys. 61 (1), 013504, 16 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  24. W. A. Zúñiga Galindo, B. A. Zambrano-Luna and E. León-Cardenal, “Graphs, local zeta functions, log-Coulomb gases, and phase transitions at finite temperature,” J. Math. Phys. 63 (1), 013506, 21 (2022).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Clay Petsche for confirming several details about the measure and metric on \(\mathbb{P}^1(K)\), and I would like to thank Chris Sinclair for many useful suggestions regarding the Power Laws and the Quadratic Recurrence. Finally, I would like to thank the referees for their careful review of the manuscript and their many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joe Webster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, J. log-Coulomb Gases in the Projective Line of a \(p\)-Field. P-Adic Num Ultrametr Anal Appl 15, 59–80 (2023). https://doi.org/10.1134/S2070046623010041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046623010041

Keywords

Navigation