Skip to main content
Log in

B[e] Star CI Camelopardalis in the Optical Range

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We report the results of photometric and spectroscopic monitoring of CI Cam within 24 years since its outburst in 1998. Over this time, we found a system component emitting in the He II 4686 Å emission line, on an elliptical orbit with a period of \(19\overset{\textrm{d}}{.}407\) days and an eccentricity of 0.44–0.49. The variations of the optical brightness are observed with the same period and with an average amplitude of \(0\overset{\textrm{m}}{.}04\). The total amplitude of the He II radial velocity variations is about 380 km s\({}^{-1}\). The equivalent width of the line is variable on a time scale of tens of minutes as well as with the orbital period. Maximum equivalent widths of the He II line are observed when the component passes the descending node of the orbit. The intensity of the He II 4686 Å emission gradually increases with time. Slow radial velocity variations on a scale of decades were detected by means of high resolution spectroscopy in the iron emission lines and a forbidden nitrogen line formed in the circumstellar nebula. The B-type star turned out to be a pulsating variable. During the period between 2005 and 2009, pulsations were multiperiodic with the dominant periods \(0\overset{\textrm{d}}{.}5223\), \(0\overset{\textrm{d}}{.}41539\), and \(0\overset{\textrm{d}}{.}26630\) days. However, since 2012 it has pulsated in a single mode with a variable period in the \(0\overset{\textrm{d}}{.}403{-}0\overset{\textrm{d}}{.}408\) day range depending on the star’s luminosity. We identify the 2005–2009 pulsations as a resonance of the radial modes, and the residual stable mode as the first overtone. The pulsations are coherent on a scale of several months, and their average amplitudes are \(0\overset{\textrm{m}}{.}02{-}0\overset{\textrm{m}}{.}04\). The pulsation data constrain the spectral type of the main component to B0–B2 III, the distance to the system to 2.5–4.5 kpc, and the absolute visual magnitude \(M_{V}\) to the range of \(-3\overset{\textrm{m}}{.}7\) to \(-4\overset{\textrm{m}}{.}9\). The classification of the CI Cam main component as a B[e] supergiant is completely ruled out due to the observed pulsation periods. CI Cam may be a system at the stage after the first mass exchange and may be attributed to the FS CMa-type group of objects with the B[e] phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. Developed by V. P. Goranskij.

  2. https://outerspace.stsci.edu/display/TESS/TESS+Holdings+Available+by+MAST+Service

  3. Developed by V.P. Goranskij.

  4. Slowly Pulsating B-stars.

  5. SLF—a stochastic low-frequency process—random, unpredictable light variations which can be described by one mathematical parameter.

REFERENCES

  1. C. Aerts, Rev. Modern Physics 93 (1), article id. 015001 (2021).

  2. V. L. Afanasiev and A. V. Moiseev, Astronomy Letters 31 (3), 194 (2005).

    Article  ADS  Google Scholar 

  3. D. A. Allen and J. P. Swings, Astron. and Astrophys. 47, 293 (1976).

    ADS  Google Scholar 

  4. E. A. Barsukova, N. V. Borisov, A. N. Burenkov, et al., Astronomy Reports 50 (8), 664 (2006a).

    Article  ADS  Google Scholar 

  5. E. A. Barsukova, N. V. Borisov, A. N. Burenkov, et al., ASP Conf. Ser. 355, 305 (2006b).

  6. E. A. Barsukova, N. V. Borisov, V. P. Goranskii, et al., Astronomy Reports 46 (4), 275 (2002).

    Article  ADS  Google Scholar 

  7. E. A. Barsukova, A. N. Burenkov, and V. P. Goranskij, Astronomer’s Telegram, No. 14362 (2021).

  8. E. A. Barsukova, S. N. Fabrika, S. A. Pustil’nik, and A. V. Ugryumov, Bull. Spec. Astrophys. Obs. 45, 147 (1998).

    ADS  Google Scholar 

  9. E. A. Barsukova and V. P. Goranskij, Astronomer’s Telegram, No. 1381 (2008).

  10. E. A. Barsukova and V. P. Goranskij, Comm. Asteroseismology 159, 71 (2009).

    Article  ADS  Google Scholar 

  11. E. A. Barsukova, V. G. Klochkova, V. E. Panchuk, et al., Astronomer’s Telegram, No. 1036 (2007).

  12. E. S. Bartlett, J. S. Clark, M. J. Coe, et al., Monthly Notices Royal Astron. Soc. 429 (2), 1213 (2013).

    Article  ADS  Google Scholar 

  13. E. S. Bartlett, J. S. Clark, and I. Negueruela, Astron. and Astrophys. 622, id. A93 (2019).

  14. C. S. Beals, Monthly Notices Royal Astron. Soc. 91, 966 (1931).

    Article  ADS  Google Scholar 

  15. T. Belloni, S. Dieters, M. E. van den Ancker, et al., Astrophys. J. 527 (1), 345 (1999).

    Article  ADS  Google Scholar 

  16. Y. K. Bergner, A. S. Miroshnichenko, R. V. Yudin, et al., Astron. and Astrophys. Suppl. 112, 221 (1995).

    ADS  Google Scholar 

  17. K. J. Borkowski, Acta Astronomica 30, 393 (1980).

    ADS  Google Scholar 

  18. S. Burssens, S. Simón-Díaz, D. M. Bowman, et al., Astron. and Astrophys. 639, id. A81 (2020).

  19. S. Carpano, F. Haberl, C. Maitra, and G. Vasilopoulos, Monthly Notices Royal Astron. Soc. 476 (1), L45 (2018).

    Article  ADS  Google Scholar 

  20. R. F. Christy, Astrophys. J. 144, 108 (1966).

    Article  ADS  Google Scholar 

  21. J. S. Clark, A. S. Miroshnichenko, V. M. Larionov, et al., Astron. and Astrophys. 356, 50 (2000).

    ADS  Google Scholar 

  22. J. S. Clark, I. A. Steele, R. P. Fender, and M. J. Coe, Astron. and Astrophys. 348, 888 (1999).

    ADS  Google Scholar 

  23. P. De Cat, ASP Conf. Ser. 259, 196 (2002).

  24. T. J. Deeming, Astrophys. and Space Sci. 36 (1), 137 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Della Valle, AIP Conf. Proc. 637, 443 (2002).

    Article  ADS  Google Scholar 

  26. R. A. Downes, Publ. Astron. Soc. Pacific 96, 807 (1984).

    Article  ADS  Google Scholar 

  27. F. Frontera, M. Orlandini, L. Amati, et al., Astron. and Astrophys. 339, L69 (1998).

    ADS  Google Scholar 

  28. D. R. Gies, M. V. McSwain, R. L. Riddle, et al., Astrophys. J. 566 (2), 1069 (2002).

    Article  ADS  Google Scholar 

  29. V. P. Goranskii, Sov. Astron. 33, 45 (1989).

    ADS  Google Scholar 

  30. V. Goranskij, Peremennye Zvezdy 31 (5), 5 (2011).

    ADS  Google Scholar 

  31. V. Goranskij and E. A. Barsukova, Peremennye Zvezdy 7 (15), 15 (2007).

    Google Scholar 

  32. V. Goranskij, C. M. Clement, and M. Thompson, in Proc. Intern. Conf. on Variable Stars, the Galactic halo and Galaxy Formation, Zvenigorod, Russia, 2009, Ed. by C. Sterken, N. Samus, and L. Szabados ( Astronomical Institute of Moscow University, Moscow, 2010), p. 115.

  33. V. P. Goranskij and E. A. Barsukova, Astrophysical Bulletin 64 (1), 50 (2009).

    Article  ADS  Google Scholar 

  34. V. P. Goranskij and E. A. Barsukova, Astronomer’s Telegram, No. 12097 (2018).

  35. V. P. Goranskij, E. A. Barsukova, K. S. Bjorkman, et al., ASP Conf. Ser. 508, 307 (2017).

  36. M. Heida, R. M. Lau, B. Davies, et al., Astrophys. J. 883 (2), article id. L34 (2019).

  37. A. Henden and U. Munari, Astron. and Astrophys. 458 (1), 339 (2006).

    Article  ADS  Google Scholar 

  38. F. C. Henroteau, Handbuch der Astrophysik 6, 299 (1928).

    ADS  Google Scholar 

  39. R. M. Hjellming, A. J. Mioduszewski, E. L. Robinson, et al., IAU Circ., No. 6862, 1 (1998).

    ADS  Google Scholar 

  40. R. I. Hynes, J. S. Clark, E. A. Barsukova, et al., Astron. and Astrophys. 392, 991 (2002).

    Article  ADS  Google Scholar 

  41. I. Iben Jr., Astrophys. J. 259, 244 (1982).

    Article  ADS  Google Scholar 

  42. M. Ishida, K. Morio, and Y. Ueda, Astrophys. J. 601 (2), 1088 (2004).

    Article  ADS  Google Scholar 

  43. G. H. Jacoby, D. A. Hunter, and C. A. Christian, Astrophys. J. Suppl. 56, 257 (1984).

    Article  Google Scholar 

  44. J. Jurcsik, P. Smitola, G. Hajdu, et al., Astrophys. J. Suppl. 219 (2), 25 (2015).

    Article  ADS  Google Scholar 

  45. V. G. Klochkova, V. E. Panchuk, and M. V. Yushkin, Astrophysical Bulletin 77 (1), 84 (2022).

    Article  ADS  Google Scholar 

  46. A. Kostenkov, A. Vinokurov, Y. Solovyeva, et al., Astrophysical Bulletin 75 (2), 182 (2020).

    Article  ADS  Google Scholar 

  47. D. W. Kurtz, D. M. Bowman, S. J. Ebo, et al., Monthly Notices Royal Astron. Soc. 455 (2), 1237 (2016).

    Article  ADS  Google Scholar 

  48. H. J. G. L. M. Lamers, F.-J. Zickgraf, D. de Winter, et al., Astron. and Astrophys. 340, 117 (1998).

    ADS  Google Scholar 

  49. J. F. Le Borgne, G. Bruzual, R. Pelló, et al., Astron. and Astrophys. 402, 433 (2003).

    Article  ADS  Google Scholar 

  50. P. W. Merrill and C. G. Burwell, Astrophys. J. 78, 87 (1933).

    Article  ADS  Google Scholar 

  51. A. J. Mioduszewski and M. P. Rupen, Astrophys. J. 615 (1), 432 (2004).

    Article  ADS  Google Scholar 

  52. A. S. Miroshnichenko, Astronomical and Astrophysical Transactions 6 (4), 251 (1995).

    Article  ADS  Google Scholar 

  53. A. S. Miroshnichenko, Astrophys. J. 667 (1), 497 (2007).

    Article  ADS  Google Scholar 

  54. A. S. Miroshnichenko, V. G. Klochkova, K. S. Bjorkman, and V. E. Panchuk, Astron. and Astrophys. 390, 627 (2002).

    Article  ADS  Google Scholar 

  55. A. S. Miroshnichenko, A. V. Pasechnik, N. Manset, et al., Astrophys. J. 766 (2), article id. 119 (2013).

  56. P. Moskalik, R. Smolec, K. Kolenberg, et al., Monthly Notices Royal Astron. Soc. 447 (3), 2348 (2015).

    Article  ADS  Google Scholar 

  57. H. Netzel and R. Smolec, Monthly Notices Royal Astron. Soc. 515 (3), 3439 (2022).

    Article  ADS  Google Scholar 

  58. H. Netzel, R. Smolec, and P. Moskalik, Monthly Notices Royal Astron. Soc. 453 (2), 2022 (2015).

    Article  ADS  Google Scholar 

  59. M. Orlandini, A. N. Parmar, F. Frontera, et al., Astron. and Astrophys. 356, 163 (2000).

    ADS  Google Scholar 

  60. A. Orr, A. N. Parmar, M. Orlandini, et al., Astron. and Astrophys. 340, L19 (1998).

    ADS  Google Scholar 

  61. S. P. Owocki and S. R. Cranmer, ASP Conf. Ser. 259, 512 (2002).

  62. V. E. Panchuk, V. G. Klochkova, and M. V. Yushkin, Astronomy Reports 61 (9), 820 (2017).

    Article  ADS  Google Scholar 

  63. E. L. Robinson, I. I. Ivans, and W. F. Welsh, Astrophys. J. 565 (2), 1169 (2002).

    Article  ADS  Google Scholar 

  64. D. Smith, R. Remillard, J. Swank, et al., IAU Circ., No. 6855, 1 (1998).

    ADS  Google Scholar 

  65. I. Soszyński, R. Poleski, A. Udalski, et al., Acta Astronomica 60 (1), 17 (2010).

    ADS  Google Scholar 

  66. V. Straizys, Metal-deficient stars (Institut Fiziki Akad. Nauk Litovskoj SSR, Mokslas, Vil’nyus) (1982).

    Google Scholar 

  67. N. D. Thureau, J. D. Monnier, W. A. Traub, et al., Monthly Notices Royal Astron. Soc. 398 (3), 1309 (2009).

    Article  ADS  Google Scholar 

  68. Y. Ueda, M. Ishida, H. Inoue, et al., Astrophys. J. 508 (2), L167 (1998).

    Article  ADS  Google Scholar 

  69. W. van Rensbergen, J. P. De Greve, C. De Loore, and N. Mennekens, Astron. and Astrophys. 487 (3), 1129 (2008).

    Article  ADS  Google Scholar 

  70. V. A. Villar, E. Berger, R. Chornock, et al., Astrophys. J. 830 (1), 11 (2016).

    Article  ADS  Google Scholar 

  71. V. Šimon, C. Bartolini, A. Guarnieri, et al., New Astronomy12 (7), 578 (2007a).

  72. V. Šimon, C. Bartolini, A. Guarnieri, et al., Open European Journal on Variable Stars 0075, 24 (2007b).

    ADS  Google Scholar 

  73. R. Williams and E. Mason, Astrophys. and Space Sci. 327 (2), 207 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.V. Borisov, A.F. Valeev, G.G. Valyavin, A.S. Vinokurov, V.V. Vlasyuk, V.G. Klochkova, D.N. Monin, V.E. Panchuk, S.N. Fabrika, M.V. Yushkin and S.Yu. Shugarov, who took part in the observations, showed an interest in this investigation, and provided observational material for analysis.

This work makes use of the Gaia DR1–DR3 databases, TESS (Mikulski Archive for Space Telescopes at STScI), and the NIST Atomic Spectra Database.

Observations with the SAO RAS telescopes are supported by the Ministry of Science and Higher Education of the Russian Federation. The renovation of telescope equipment is currently provided within the national project ‘‘Science and Universities’’. The work was performed as part of the SAO RAS government contract approved by the Ministry of Science and Higher Education of the Russian Federation.

We thank the Russian Telescope Time Allocation Committee for providing the BTA observing time, and also the administration of SAO RAS for the Zeiss-1000 telescope observing time.

V.P. Goranskij and E.A. Barsukova are grateful to the administrations of MSU, SAI and the Crimean Astronomical Station of SAI MSU for the alloted Crimean station telescope time and longstanding support of the work on this subject.

This paper is partly based on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique de France, and the University of Hawaii. The observations at CFHT were performed with care and respect from the summit of Maunakea, which is a significant cultural and historic site.

Funding

P.L.N., L.H.I. and K.A.S. would like to thank the Bulgarian Research Foundation for partial financial support of this work with a bilateral grant KP-06-RUSSIA-9/2019. The study was financially supported by the Russian Foundation for Basic Research and the National Science Foundation of Bulgaria as a part of the scientific project No. 19-52-18007 and Grant KP-06-Russia-9/2019. S.Z. and A.M. acknowledge PAPIIT grants IN102120 and IN119323. This research has been funded in part by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Barsukova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by L. Chmyreva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsukova, E.A., Burenkov, A.N., Goranskij, V.P. et al. B[e] Star CI Camelopardalis in the Optical Range. Astrophys. Bull. 78, 1–24 (2023). https://doi.org/10.1134/S1990341323010029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323010029

Keywords:

Navigation