Skip to main content
Log in

On Tidal Distances between Components of Wide Binary Stars in the Pleiades

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

The paper estimates the tidal distances \(|\xi_{c,1,2}|\) between the components of wide binary stars (BS) in the Pleiades. We used data on the parameters of the Pleiades cluster and wide BSs in the Pleiades, obtained earlier from the Gaia DR2 data. Two models of a cluster are considered in the form of a gravitating sphere, homogeneous and inhomogeneous in density. Using the integrals of angular momentum and energy of the motion of the centers of mass of the BSs, two elliptical orbits and two open ‘‘rosette-like’’ trajectories of the centers of mass of the BSs relative to the center of mass of the three-body system (the BS components and the cluster) are constructed. For three bodies in a coordinate system nonuniformly rotating relative to their center of mass with the origin at the center of mass of the BS the equations of motion are written. For the model of a homogeneous cluster, a formula is obtained for the value \(|\xi_{c,1,2}|\) for a BS moving along an elliptical orbit. The integrals of angular momentum and energy of motion of the components of the BS and three bodies of the system are obtained. The sizes of the area under the surface of zero velocities (SZV) of the BS components along the axes of the coordinate system with the origin in the center of mass of the BS are estimated. It is shown that in the model of a homogeneous cluster, the sizes of the area under the SZV of the BS components in the pericenters of the considered orbits are smaller than in the apocenters, and on the inner and outer parts of the BS orbits there are restrictions on the size of the area under the SZV of the BS components that differ in number and magnitude. For the model of an inhomogeneous cluster, an equation is obtained for the quantity \(|\xi_{c,1,2}|\) for the BS moving along the ‘‘rosette’’ trajectory relative to the center of mass of three bodies. The quantities \(|\xi_{c,1,2}|\) are numerically determined for the BS at different points of two such trajectories. With the help of the energy integral \(E_{1,2,3}\) of the motion of three bodies, the sizes of the area under the SZV of the BS components are determined. With an increase in the distance of the center of mass of the BS from the center of mass of three bodies in the model of an inhomogeneous cluster, an increase in the size of the area under the SZV of the BS components was noted, as well as the existence of more complex restrictions on the size of this area than in a homogeneous cluster. Mutual distances \(r_{i,j}\) between the components of wide BSs in the Pleiades are between the maximum and minimum values of \(|\xi_{c,1,2}|\) for BSs on ‘‘rosette’’ trajectories. The increase in \(r_{i,j}\) with the distances \(r_{i}\) of the BS components from the center of the cluster is mainly due to the motion of the BS along its trajectories in the Pleiades. Other applications of the integral \(E_{1,2,3}\) for estimating the BS parameters in the Pleiades are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. S. J. Aarseth, Astrophys. and Space Sci. 13 (2), 324 (1971).

    Article  ADS  Google Scholar 

  2. L. Angeletti, R. Capuzzo-Dolcetta, and P. Giannone, Astron. and Astrophys. 121 (2), 183 (1983).

    ADS  Google Scholar 

  3. L. Angeletti and P. Giannone, Astron. and Astrophys. 121 (2), 188 (1983).

    ADS  Google Scholar 

  4. M. R. Bate, I. A. Bonnell, and V. Bromm, Monthly Notices Royal Astron. Soc. 336 (3), 705 (2002).

    Article  ADS  Google Scholar 

  5. J. Binney and S. Tremaine, Galactic Dynamics, 2nd ed. (Princeton Univ. Press, Princeton, 2008).

    Book  MATH  Google Scholar 

  6. P. Bodenheimer, ASP Conf. Ser. 229, 67 (2001).

  7. P. Bodenheimer and A. Burkert, Proc. IAU Symp. No. 200, 13 (2001).

  8. A. G. A. Brown et al. (Gaia Collab.), Astron. and Astrophys. 616, id. A1 (2018).

  9. J. A. Caballero, I. Novalbos, T. Tobal, and F. X. Miret, Astronomische Nachrichten 339 (1), 60 (2018).

    Article  ADS  Google Scholar 

  10. S. Chandrasekhar, Principles of Stellar Dynamics (University of Chicago Press, Chichago, 1942; Inostrannaya Literatura, Moscow, 1948).

  11. S. Christian, A. Vanderburg, J. Becker, et al., Astron. J. 163 (5), 207 (2022).

    Article  ADS  Google Scholar 

  12. V. M. Danilov, Astronomy Reports 49 (8), 604 (2005).

    Article  ADS  Google Scholar 

  13. V. M. Danilov, Astrophysical Bulletin 76 (1), 55 (2021a).

    Article  ADS  Google Scholar 

  14. V. M. Danilov, Astrophysical Bulletin 76 (3), 269 (2021b).

    Article  ADS  Google Scholar 

  15. V. M. Danilov, Astrophysical Bulletin 77 (2), 182 (2022).

    Article  ADS  Google Scholar 

  16. V. M. Danilov and A. F. Seleznev, Astrophysical Bulletin 75 (4), 407 (2020).

    Article  ADS  Google Scholar 

  17. M. De Furio, M. R. Meyer, M. Reiter, et al., Astrophys. J. 925 (2), id. 112 (2022).

  18. N. R. Deacon and A. L. Kraus, Monthly Notices Royal Astron. Soc. 496 (4), 5176 (2020).

    Article  ADS  Google Scholar 

  19. H. B. Dwight, Tables of Integrals and Other Mathematical Data, 4th ed. (The MacMillan Company, New York, 1961; Nauka, Fizmatlit, Moscow, 1973).

  20. D. C. Heggie, Monthly Notices Royal Astron. Soc. 173, 729 (1975).

    Article  ADS  Google Scholar 

  21. L. A. Hillenbrand, C. Zhang, R. L. Riddle, et al., Astron. J. 155 (2), article id. 51 (2018).

  22. W. H. Jefferys, Astron. J. 81, 983 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Jerabkova, G. Beccari, H. M. J. Boffin, et al., Astron. and Astrophys. 627, id. A57 (2019).

  24. D. W. Keenan, Astron. and Astrophys. 95 (2), 334 (1981a).

    ADS  Google Scholar 

  25. D. W. Keenan, Astron. and Astrophys. 95 (2), 340 (1981b).

    ADS  Google Scholar 

  26. D. W. Keenan, K. A. Innanen, and F. C. House, Astron. J. 78, 173 (1973).

    Article  ADS  Google Scholar 

  27. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill Book Company, Inc., New York-Toronto-London, 1961).

    MATH  Google Scholar 

  28. L. D. Landau and E. M. Lifshits, Theoretical Physics. Mechanics, 4th ed., Vol. I (Moscow, Nauka, 1988) [in Russian].

    MATH  Google Scholar 

  29. S. S. R. Offner, M. M. Dunham, K. I. Lee, et al., Astrophys. J. 827 (1), article id. L11 (2016).

  30. L. A. Pearce, A. L. Kraus, T. J. Dupuy, et al., Astrophys. J. 894 (2), id. 115 (2020).

  31. T. Prusti et al. (Gaia Collab.), Astron. and Astrophys. 595, id. A1 (2016).

  32. A. N. Raju, D. Guszejnov, and S. S. R. Offner, Research Notes American Astron. Soc. 5 (7), id. 164 (2021).

  33. B. Reipurth, S. Mikkola, M. Connelley, and M. Valtonen, Astrophys. J. 725 (1), L56 (2010).

    Article  ADS  Google Scholar 

  34. G. Torres, D. W. Latham, and S. N. Quinn, Astrophys. J. 921 (2), id. 117 (2021).

  35. A. V. Zasov and K. A. Postnov, General Astrophysics, 2nd ed. (Vek 2, Fryazino, 2011) [in Russian].

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, FEUZ-2023-0019. This work was supported in part by the Act No. 211 of the Government of the Russian Federation, Agreement No. 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Danilov.

Ethics declarations

The author declares no conflict of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, V.M. On Tidal Distances between Components of Wide Binary Stars in the Pleiades. Astrophys. Bull. 78, 60–78 (2023). https://doi.org/10.1134/S1990341323010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323010042

Keywords:

Navigation