Skip to main content
Log in

Prediction of leading-edge-vortex initiation using criticality of the boundary layer

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The initiation of leading-edge-vortex formation in unsteady airfoil flows is governed by flow criticality at the leading edge. While earlier works demonstrated the promise of criticality of leading-edge suction in governing LEV shedding, this criterion is airfoil and Reynolds number dependent. In this work, by examining results from Navier–Stokes computations for a large set of pitching airfoil cases at laminar flow conditions, we show that the onset of flow reversal at the leading edge always corresponds to the boundary-layer shape factor reaching the same critical value that governs laminar flow separation in steady airfoil flows. Further, we show that low-order prediction of this boundary-layer criticality is possible with an integral-boundary-layer calculation performed using potential-flow velocity distributions from an unsteady panel method. The low-order predictions agree well with the high-order computational results with a single empirical offset that is shown to work for multiple airfoils. This work shows that boundary-layer criticality governs LEV initiation, and that a low-order prediction approach is capable of predicting this boundary-layer criticality and LEV initiation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. McCroskey, W.J.: Unsteady airfoils. Annu. Rev. Fluid Mech. 14(1), 285–311 (1982). https://doi.org/10.1146/annurev.fl.14.010182.001441

  2. Ghosh Choudhuri, P., Knight, D., Visbal, M.R.: Two-dimensional unsteady leading-edge separation on a pitching airfoil. AIAA J. 32(4), 673–681 (1994). https://doi.org/10.2514/3.12040

    Article  Google Scholar 

  3. Ghosh Choudhuri, P., Knight, D.D.: Effects of compressibility, pitch rate, and Reynolds number on unsteady incipient leading-edge boundary layer separation over a pitching airfoil. J. Fluid Mech. 308, 195–217 (1996). https://doi.org/10.1017/S0022112096001450

    Article  MATH  Google Scholar 

  4. Widmann, A., Tropea, C.: Parameters influencing vortex growth and detachment on unsteady aerodynamic profiles. J. Fluid Mech. 773, 432–459 (2015). https://doi.org/10.1017/jfm.2015.259

    Article  MathSciNet  Google Scholar 

  5. Benton, S.I., Visbal, M.R.: The onset of dynamic stall at a high, transitional Reynolds number. J. Fluid Mech. 861, 860–885 (2019). https://doi.org/10.1017/jfm.2018.939

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, Z.-Y., Feng, L.-H., Kissing, J., Tropea, C., Wang, J.-J.: Experimental investigation on the leading-edge vortex formation and detachment mechanism of a pitching and plunging plate. J. Fluid Mech. 901, 17 (2020)

    Article  Google Scholar 

  7. Kissing, J., Kriegseis, J., Li, Z., Feng, L., Hussong, J., Tropea, C.: Insights into leading edge vortex formation and detachment on a pitching and plunging flat plate. Exp. Fluids 61(9), 208 (2020). https://doi.org/10.1007/s00348-020-03034-1

    Article  Google Scholar 

  8. Jardin, T., Choi, J., Colonius, T.: An empirical correlation between lift and the properties of leading-edge vortices. Theoret. Comput. Fluid Dyn. 35(4), 437–448 (2021). https://doi.org/10.1007/s00162-021-00567-x

    Article  MathSciNet  Google Scholar 

  9. Ōtomo, S., Henne, S., Mulleners, K., Ramesh, K., Viola, I.M.: Unsteady lift on a high-amplitude pitching aerofoil. Exp. Fluids 62, 1–18 (2021)

    Article  Google Scholar 

  10. Son, O., Gao, A.-K., Gursul, I., Cantwell, C.D., Wang, Z., Sherwin, S.J.: Leading-edge vortex dynamics on plunging airfoils and wings. J. Fluid Mech. (2022). https://doi.org/10.1017/jfm.2022.224

    Article  MathSciNet  MATH  Google Scholar 

  11. Seshadri, P.K., Aravind, A., De, A.: Leading edge vortex dynamics in airfoils: effect of pitching motion at large amplitudes. J. Fluids Struct. 116, 103796 (2023)

    Article  Google Scholar 

  12. Evans, W.T., Mort, K.W.: Analysis of computed flow parameters for a set of sudden stalls in low speed two-dimensional flow. Technical Report TN D-85, NACA (1959)

  13. Beddoes, T.: Onset of leading edge separation effects under dynamic conditions and low mach number. In: American Helicopter Society, Annual National Forum, 34 Th, Washington, D. C, Proceedings, Research Supported by the Ministry of Defence,(Procurement Executive), vol. 15 (1978)

  14. Ekaterinaris, J.A., Platzer, M.F.: Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 33(11–12), 759–846 (1998). https://doi.org/10.1016/S0376-0421(97)00012-2

    Article  Google Scholar 

  15. Morris, W.J., Rusak, Z.: Stall onset on aerofoils a low to moderately high Reynolds number flows. J. Fluid Mech. 733, 439–472 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M.V., Edwards, J.R.: Discrete-vortex method with novel shedding criterion for unsteady airfoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751, 500–538 (2014). https://doi.org/10.1017/jfm.2014.297

    Article  MathSciNet  Google Scholar 

  17. Narsipur, S., Hosangadi, P., Gopalarathnam, A., Edwards, J.R.: Variation of leading-edge suction during stall for unsteady aerofoil motions. J. Fluid Mech. 900, 25 (2020). https://doi.org/10.1017/jfm.2020.467

    Article  MathSciNet  MATH  Google Scholar 

  18. Ham, N.D., Garelick, M.S.: Dynamic stall considerations in helicopter rotors. J. Am. Helicopter Soc. 13(2), 49–55 (1968)

    Article  Google Scholar 

  19. Crimi, P.: Dynamic stall. Technical report, Advisory Group for Aerospace Research and Development Paris (France) (1973)

  20. McCroskey, W.J., McAlister, K., Carr, L., Pucci, S., Lambert, O., Indergrand, R.: Dynamic stall on advanced airfoil sections. J. Am. Helicopter Soc. 26(3), 40–50 (1981)

    Article  Google Scholar 

  21. Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R., Hedenström, A.: Leading-edge vortex improves lift in slow-flying bats. Science 319(5867), 1250–1253 (2008). https://doi.org/10.1126/science.1153019

    Article  Google Scholar 

  22. Lentink, D., Dickson, W.B., Van Leeuwen, J.L., Dickinson, M.H.: Leading-edge vortices elevate lift of autorotating plant seeds. Science 324(5933), 1438–1440 (2009)

    Article  Google Scholar 

  23. Ford, C.W.P., Babinsky, H.: Lift and the leading-edge vortex. J. Fluid Mech. 720, 280–313 (2013). https://doi.org/10.1017/jfm.2013.28

    Article  MathSciNet  MATH  Google Scholar 

  24. Videler, J., Stamhuis, E., Povel, G.: Leading-edge vortex lifts swifts. Science 306(5703), 1960–1962 (2004)

    Article  Google Scholar 

  25. Krishna, S., Green, M.A., Mulleners, K.: Flowfield and force evolution for a symmetric hovering flat-plate wing. AIAA J. 56(4), 1360–1371 (2018)

    Article  Google Scholar 

  26. Krishna, S., Green, M.A., Mulleners, K.: Effect of pitch on the flow behavior around a hovering wing. Exp. Fluids 60(5), 1–17 (2019)

    Article  Google Scholar 

  27. Liu, Z., Lai, J.C.S., Young, J., Tian, F.-B.: Discrete vortex method with flow separation corrections for flapping-foil power generators. AIAA J. 55(2), 410–418 (2017). https://doi.org/10.2514/1.J055267

    Article  Google Scholar 

  28. Hirato, Y., Shen, M., Gopalarathnam, A., Edwards, J.R.: Vortex-sheet representation of leading-edge vortex shedding from finite wings. J. Aircr. 56(4), 1626–1640 (2019). https://doi.org/10.2514/1.C035124

    Article  Google Scholar 

  29. Hirato, Y., Shen, M., Gopalarathnam, A., Edwards, J.R.: Flow criticality governs leading-edge-vortex initiation on finite wings in unsteady flow. J. Fluid Mech. 910, 1 (2021). https://doi.org/10.1017/jfm.2020.896

    Article  MathSciNet  MATH  Google Scholar 

  30. Deparday, J., Mulleners, K.: Modeling the interplay between the shear layer and leading edge suction during dynamic stall. Phys. Fluids 31(10), 107104 (2019). https://doi.org/10.1063/1.5121312

    Article  Google Scholar 

  31. Smith, L.R., Jones, A.R.: Vortex formation on a pitching aerofoil at high surging amplitudes. J. Fluid Mech. 905, 22 (2020). https://doi.org/10.1017/jfm.2020.741

    Article  MathSciNet  MATH  Google Scholar 

  32. Deparday, J., He, X., Eldredge, J.D., Mulleners, K., Williams, D.R.: Experimental quantification of unsteady leading-edge flow separation. J. Fluid Mech. 941, 60 (2022). https://doi.org/10.1017/jfm.2022.319

    Article  MATH  Google Scholar 

  33. Sudharsan, S., Ganapathysubramanian, B., Sharma, A.: A vorticity-based criterion to characterise leading edge dynamic stall onset. J. Fluid Mech. 935, 10 (2022). https://doi.org/10.1017/jfm.2021.1149

    Article  MathSciNet  MATH  Google Scholar 

  34. Miotto, R., Wolf, W., Gaitonde, D., Visbal, M.: Analysis of the onset and evolution of a dynamic stall vortex on a periodic plunging aerofoil. J. Fluid Mech. (2022). https://doi.org/10.1017/jfm.2022.165

    Article  MathSciNet  MATH  Google Scholar 

  35. Eppler, R.A., Somers, D.M.: A computer program for the design and analysis of low-speed airfoils. Technical report, National Aeronautics and Space Administration, Scientific and Technical Information Branch (1980)

  36. Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low reynolds number airfoils. AIAA J. (1987). https://doi.org/10.2514/3.9789

    Article  MATH  Google Scholar 

  37. Selig, M.S., Maughmer, M.D.: Generalized multipoint inverse airfoil design. AIAA J. 30(11), 2618–2625 (1992)

    Article  MATH  Google Scholar 

  38. Gendrich, C.P.: Dynamic stall of rapidly pitching airfoils: MTV experiments and navier-stokes simulations. PhD thesis, Michigan State University (1999)

  39. Prandtl, L.: Über flussigkeitsbewegung bei sehr kleiner reibung. Verhandl. III, Internat. Math.-Kong., Heidelberg, Teubner, Leipzig, pp. 484–491 (1904)

  40. Rott, N.: Unsteady viscous flow in the vicinity of a stagnation point. Q. Appl. Math. 13(4), 444–451 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sears, W.: Some recent developments in airfoil theory. J. Aeronaut. Sci. 23(5), 490–499 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  42. Moore, F.K.: On the separation of the unsteady laminar boundary layer. In: Grenzschichtforschung/Boundary Layer Research, pp. 296–311 (1958)

  43. Haller, G.: Exact theory of unsteady separation for two-dimensional flows. J. Fluid Mech. 512, 257–311 (2004). https://doi.org/10.1017/S0022112004009929

    Article  MATH  Google Scholar 

  44. Miron, P., Vétel, J.: Towards the detection of moving separation in unsteady flows. J. Fluid Mech. 779, 819–841 (2015). https://doi.org/10.1017/jfm.2015.461

    Article  MathSciNet  MATH  Google Scholar 

  45. Klose, B.F., Jacobs, G.B., Serra, M.: Kinematics of Lagrangian flow separation in external aerodynamics. AIAA J. 58(5), 1926–1938 (2020)

    Article  Google Scholar 

  46. Matsushita, M., Murata, S., Akamatsu, T.: Studies on boundary-layer separation in unsteady flows using an integral method. J. Fluid Mech. 149, 477–501 (1984). https://doi.org/10.1017/S0022112084002767

    Article  MATH  Google Scholar 

  47. Matsushita, M., Akamatsu, T.: Numerical computation of unsteady laminar boundary layers with separation using one-parameter integral method: 2nd report, the separation singularity in unsteady boundary layer. Bull. JSME 28(240), 1044–1049 (1985). https://doi.org/10.1299/jsme1958.28.1044

    Article  Google Scholar 

  48. Paturle, M.L., Bose, C., Viola, I.M., Ramesh, K.K.: Dynamic detection of flow separation using integral formulation of unsteady boundary layer equations. In: AIAA Aviation 2022 Forum. American Institute of Aeronautics and Astronautics, Chicago, IL & Virtual (2022). https://doi.org/10.2514/6.2022-4138

  49. McDonald, H., Shamroth, S.J.: An analysis and application of the time- dependent turbulent boundary-layer equations. AIAA J. 9(8), 1553–1560 (1971). https://doi.org/10.2514/3.6391

    Article  Google Scholar 

  50. Jones, K., Platzer, M.: On the prediction of dynamic stall onset on airfoils in low speed flow. In: Proceedings of the 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, pp. 797–812 (1998)

  51. Drela, M.: Newton solution of coupled viscous/inviscid multielement airfoil flows. In: 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. American Institute of Aeronautics and Astronautics, Seattle (1990). https://doi.org/10.2514/6.1990-1470

  52. Narsipur, S., Gopalarathnam, A., Edwards, J.R.: Low-order modeling of airfoils with massively separated flow and leading-edge vortex shedding. In: 2018 AIAA Aerospace Sciences Meeting, pp. 0813 (2018)

  53. Narsipur, S., Gopalarathnam, A., Edwards, J.R.: Low-order model for prediction of trailing-edge separation in unsteady flow. AIAA J. 57(1), 191–207 (2019). https://doi.org/10.2514/1.J057132

    Article  Google Scholar 

  54. Kamrani Fard, K., Ngo, V., Liburdy, J.A.: A leading-edge vortex initiation criteria for large amplitude foil oscillations using a discrete vortex model. Phys. Fluids 33(11), 115123 (2021). https://doi.org/10.1063/5.0065097

    Article  Google Scholar 

  55. Ramanathan, H., Narsipur, S., Gopalarathnam, A.: Boundary-layer characteristics at the onset of leading-edge vortex formation on unsteady airfoils. In: AIAA Aviation 2019 Forum. American Institute of Aeronautics and Astronautics, Dallas, Texas (2019). https://doi.org/10.2514/6.2019-3590

  56. Ramanathan, H., Gopalarathnam, A.: Prediction of vortex initiation using an unsteady panel method with an integral-boundary-layer calculation. In: AIAA Aviation 2022 Forum. American Institute of Aeronautics and Astronautics, Chicago, IL & Virtual (2022). https://doi.org/10.2514/6.2022-3897

  57. Ramesh, K.: On the leading-edge suction and stagnation-point location in unsteady flows past thin aerofoils. J. Fluid Mech. 886, 13 (2020). https://doi.org/10.1017/jfm.2019.1070

    Article  MathSciNet  MATH  Google Scholar 

  58. Katz, J.: A discrete vortex method for the non-steady separated flow over an airfoil. J. Fluid Mech. 102, 315–328 (1981)

    Article  MATH  Google Scholar 

  59. Ramesh, K., Granlund, K., Ol, M.V., Gopalarathnam, A., Edwards, J.R.: Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows. Theoret. Comput. Fluid Dyn. 32(2), 109–136 (2018). https://doi.org/10.1007/s00162-017-0442-0

    Article  MathSciNet  Google Scholar 

  60. Kay, N.J., Richards, P.J., Sharma, R.N.: Low-Reynolds number behavior of the leading-edge suction parameter at low pitch rates. AIAA J. (2021). https://doi.org/10.2514/1.J060733

    Article  Google Scholar 

  61. Ramesh, K., Gopalarathnam, A., Edwards, J.R., Ol, M.V., Granlund, K.: An unsteady airfoil theory applied to pitching motions validated against experiment and computation. Theoret. Comput. Fluid Dyn. 27(6), 843–864 (2013). https://doi.org/10.1007/s00162-012-0292-8

    Article  Google Scholar 

  62. Hirato, Y., Shen, M., Aggarwal, S., Gopalarathnam, A., Edwards, J.R.: Initiation of leading-edge-vortex formation on finite wings in unsteady flow. In: 53rd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Kissimmee, Florida (2015). https://doi.org/10.2514/6.2015-0546

  63. SureshBabu, A., Medina, A., Rockwood, M., Bryant, M., Gopalarathnam, A.: Theoretical and experimental investigation of an unsteady airfoil in the presence of external flow disturbances. J. Fluid Mech. 921, 55 (2021). https://doi.org/10.1017/jfm.2021.484

    Article  MATH  Google Scholar 

  64. Suresh Babu, A.V., Narsipur, S., Bryant, M., Gopalarathnam, A.: Leading-edge-vortex tailoring on unsteady airfoils using an inverse aerodynamic approach. Phys. Fluids 34(5), 057107 (2022). https://doi.org/10.1063/5.0090328

    Article  Google Scholar 

  65. Garrick, I.E.: Propulsion of a flapping and oscillating airfoil. Technical Report NACA TR 567, NACA (1937)

  66. Drela, M.: Xfoil: an analysis and design system for low Reynolds number airfoils. In: Low Reynolds number aerodynamics, pp. 1–12 (1989)

  67. Eldredge, J.D., Wang, C.J., Ol, M.V.: A computational study of a canonical pitch-up, pitch-down wing maneuver. In: AIAA Paper 2009–3687 (2009)

  68. Granlund, K.O., Ol, M.V., Bernal, L.P.: Unsteady pitching flat plates. J. Fluid Mech. 733, 5 (2013). https://doi.org/10.1017/jfm.2013.444

    Article  MATH  Google Scholar 

  69. Cassidy, D.A., Edwards, J.R., Tian, M.: An investigation of interface-sharpening schemes for multiphase mixture flows. J. Comput. Phys. 228(16), 5628–5649 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Colella, P., Woodward, P.R.: The piecewise parabolic method (ppm) for gas-dynamic simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  MATH  Google Scholar 

  71. Edwards, J.R., Chandra, S.: Comparison of eddy viscosity-transport turbulence models for three-dimensional, shock-separated flowfields. AIAA J. 34(4), 756–763 (1996)

    Article  Google Scholar 

  72. Nielsen, T.B., Edwards, J.R., Chelliah, H.K., Lieber, D., Geipel, C., Goyne, C.P., Rockwell, R.D., Cutler, A.D.: Hybrid large eddy simulation/reynolds-averaged navier-stokes analysis of a premixed ethylene-fueled dual-mode scramjet combustor. AIAA J. 59(7), 2440–2456 (2021)

    Article  Google Scholar 

  73. Leishman, J.G.: Dynamic stall experiments on the NACA 23012 aerofoil. Exp. Fluids 9(1–2), 49–58 (1990). https://doi.org/10.1007/BF00575335

    Article  Google Scholar 

  74. Lee, T., Gerontakos, P.: Investigation of flow over an oscillating airfoil. J. Fluid Mech. (2004). https://doi.org/10.1017/S0022112004009851

    Article  MATH  Google Scholar 

  75. Tritton, D.J.: Physical fluid dynamics. Springer (2012). https://doi.org/10.1007/978-94-009-9992-3

    Book  MATH  Google Scholar 

  76. Doligalski, T., Smith, C., Walker, J.: Vortex interactions with walls. Annu. Rev. Fluid Mech. 26(1), 573–616 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  77. Gupta, R., Ansell, P.J.: Unsteady flow physics of airfoil dynamic stall. AIAA J. 57(1), 165–175 (2019). https://doi.org/10.2514/1.J057257

    Article  Google Scholar 

  78. Le Fouest, S., Mulleners, K.: The dynamic stall dilemma for vertical-axis wind turbines. Renew. Energy 198, 505–520 (2022). https://doi.org/10.1016/j.renene.2022.07.071

    Article  Google Scholar 

  79. Hess, J.L., Smith, A.M.O.: Calculation of potential flow about arbitrary bodies. Prog. Aerosp. Sci. 8, 1–138 (1967). https://doi.org/10.1016/0376-0421(67)90003-6

    Article  MATH  Google Scholar 

  80. Katz, J., Plotkin, A.: Low-Speed Aerodynamics. Cambridge Aerospace Series, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  81. Young, J.: Numerical simulation of the unsteady aerodynamics of flapping airfoils. PhD thesis, University of New South Wales, Australian Defence Force Academy, School of Aerospace, Civil and Mechanical Engineering (2005)

  82. Müller-Vahl, H.F., Strangfeld, C., Nayeri, C.N., Paschereit, C.O., Greenblatt, D.: Control of thick airfoil, deep dynamic stall using steady blowing. AIAA J. 53(2), 277–295 (2015). https://doi.org/10.2514/1.J053090

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge Professor Jack Edwards of North Carolina State University (NCSU) for providing the REACTMB-INS code used for numerical results in this work. We also acknowledge the computing resources provided by North Carolina State University High Performance Computing Services Core Facility (RRID:SCR_022168).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Gopalarathnam.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

Author A.G. is an Associate Editor for this journal.

Author contribution

AG contributed to conceptualization, writing—review and editing, and supervision; HR and AG were involved in methodology and resources; HR contributed to formal analysis and investigation and writing—original draft preparation; and none contributed to funding acquisition.

Additional information

Communicated by Karen Mulleners.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, H., Gopalarathnam, A. Prediction of leading-edge-vortex initiation using criticality of the boundary layer. Theor. Comput. Fluid Dyn. 37, 397–420 (2023). https://doi.org/10.1007/s00162-023-00648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00648-z

Keywords

Navigation