Skip to main content
Log in

Multiscale optimization of the viscoelastic behavior of short fiber reinforced composites

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

In this paper, a multiscale optimization approach for composite material design is presented. The objective is to find different material designs for a short fiber reinforced polymer (SFRP) with a desired effective (in general anisotropic) viscoelastic behavior. The paper extends the work of Staub et al. (2012) and proposes a combination of material homogenization, surrogate modeling, parameter optimization and robustness analysis. A variety of microstructure design parameters including the fiber volume fraction, the fiber orientation distribution, the linear elastic fiber properties, and the temperature dependent material behavior are considered. For the solution of the structural optimization problem, a surrogate-based optimization framework is developed. The individual steps of that framework consist of using design of experiments (DoE) for the sampling of the constraint material design space, numerical homogenization for the creation of a material property database, a surrogate modeling approach for the interpolation of the single effective viscoelastic parameters and the use of differential evolution (DE) for optimization. In the numerical homogenization step, creep simulations on virtually created representative volume elements (RVEs) are performed and a fast Fourier transform (FFT)-based homogenization is used to obtain the effective viscoelastic material parameters. For every identified optimal design, the robustness is evaluated. The considered Kriging surrogate models of Kriging type have a high prediction accuracy. Numerical examples demonstrate the efficiency of the proposed approach in determining SFRPs with target viscoelastic behavior. An experimental validation shows a good agreement of the homogenization method with corresponding measurements. During the manufacturing of composite parts, the results of such optimizations allow a consideration of the local microstructure in order to achieve the desired macroscopic viscoelastic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Marr.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marr, J., Zartmann, L., Reinel-Bitzer, D. et al. Multiscale optimization of the viscoelastic behavior of short fiber reinforced composites. Int J Mech Mater Des 19, 501–519 (2023). https://doi.org/10.1007/s10999-023-09645-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-023-09645-w

Keywords

Navigation