Skip to main content

Advertisement

Log in

Emission control and phase migration of PCDD/Fs in a rotary kiln incinerator: hazardous vs medical waste incineration

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

This study was carried out in a full-scale (50 t/d) rotary kiln incinerator to explore the removal characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) by different units of air pollution control devices (APCDs), and special interest was focused on the “memory effect” phenomenon of PCDD/Fs in the wet scrubber (WS), which usually caused an undesirable rise in PCDD/F emission concentrations. The general removal efficiency of PCDD/Fs by APCDs was 99.4% (from 14.11 at exhaust heat boiler (EHB) outlet to 0.09 ng I-TEQ/Nm3 at stack) under medical waste (MW) incineration condition, and 99.2% (from 19.91 to 0.16 ng I-TEQ/Nm3) under hazardous waste (HW) incineration condition. The PCDD/F concentrations in flue gas decreased along the APCDs except for WS, in which the “memory effect” was observed. In detail, WS largely increased the I-TEQ concentration of gas-phase PCDD/Fs from 0.047 to 0.188 ng I-TEQ/Nm3 in the flue gas, and the concentration of particulate-phase PCDD/Fs increased from 0.003 to 0.030 ng I-TEQ/Nm3. In addition, this study found that phase migration promoted the accumulation of PCDD/Fs in scrubbing water, and the flow entrainment phenomenon played a great role in causing the “memory effect”. The PCDD/F concentrations of fly ash collected from cyclone and fabric filter (FF) were as high as 4.23 and 6.99 ng I-TEQ/g, respectively, which had exceeded the national landfill limitation (3 ng I-TEQ/g) in China. The system balance calculations revealed that APCDs promoted the migration of PCDD/Fs from the gas-phase to the particulate-phase, which caused fly ash to be the main carrier of PCDD/Fs and led to excessive emissions. The results of this study can contribute to the optimized design of combustion conditions and system cleaning for controlling PCDD/F emissions from rotary kiln incinerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors do not have permission to share data.

References

  1. Antonopoulos, I.-S., Perkoulidis, G., and Logothetis, D. 2014. Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool. Resources, Conservation and Recycling 86: 149–159. https://doi.org/10.1016/j.resconrec.2014.03.002.

    Article  Google Scholar 

  2. Li, X., Yan, M., Chen, T., et al. 2010. Levels of PCDD/Fs in soil in the vicinity of a medical waste incinerator in China: The temporal variation during 2007–2009. Journal of Hazardous Materials 179 (1–3): 783–789. https://doi.org/10.1016/j.jhazmat.2010.03.072.

    Article  CAS  Google Scholar 

  3. Yan, M., Li, X.D., Lu, S.Y., et al. 2011. Persistent organic pollutant emissions from medical waste incinerators in China. Journal of Material Cycles and Waste Management 13 (3): 213–218. https://doi.org/10.1007/s10163-011-0020-2.

    Article  CAS  Google Scholar 

  4. Qiu, Q., Jiang, X., Lü, G., et al. 2019. Degradation of PCDD/Fs in MSWI fly ash using a microwave-assisted hydrothermal process. Chinese Journal of Chemical Engineering 27 (7): 1708–1715. https://doi.org/10.1016/j.cjche.2018.10.015.

    Article  CAS  Google Scholar 

  5. Chen, Z., Tang, M., Lu, S., et al. 2018. Evolution of PCDD/F-signatures during mechanochemical degradation in municipal solid waste incineration filter ash. Chemosphere 208: 176–184. https://doi.org/10.1016/j.chemosphere.2018.05.161.

    Article  CAS  Google Scholar 

  6. Grosso, M., Biganzoli, L., Rigamonti, L., et al. 2012. Experimental evaluation of PCDD/Fs and PCBs release and mass balance of a WTE plant. Chemosphere 86 (3): 293–299. https://doi.org/10.1016/j.chemosphere.2011.10.032.

    Article  CAS  Google Scholar 

  7. Du, Y., Jin, Y., Lu, S., et al. 2013. Study of PCDD/Fs distribution in fly ash, ash deposits, and bottom ash from a medical waste incinerator in China. Journal of the Air & Waste Management Association 63 (2): 230–236. https://doi.org/10.1080/10962247.2012.746753.

    Article  CAS  Google Scholar 

  8. Chen, T., Yan, J.H., Lu, S.Y., et al. 2008. Characteristic of polychlorinated dibenzo-p-Dioxins and dibenzofurans in fly ash from incinerators in China. Journal of Hazardous Materials 150 (3): 510–514. https://doi.org/10.1016/j.jhazmat.2007.04.131.

    Article  CAS  Google Scholar 

  9. Li, J., Lv, Z., Du, L., et al. 2016. Emission characteristic of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) from medical waste incinerators (MWIs) in China in 2016: A comparison between higher emission levels of MWIs and lower emission levels of MWIs. Environmental Pollution 221 (2017): 437–444. https://doi.org/10.1016/j.envpol.2016.12.009.

    Article  CAS  Google Scholar 

  10. Wang, C., Xu, J., Yang, Z., et al. 2019. A field study of polychlorinated dibenzo-p-dioxins and dibenzofurans formation mechanism in a hazardous waste incinerator: Emission reduction strategies. Journal of Cleaner Production 232: 1018–1027. https://doi.org/10.1016/j.jclepro.2019.06.020.

    Article  CAS  Google Scholar 

  11. Jiang, W., Peng, Y., Tang, M., et al. 2023. PCDD/Fs emissions in a large-scale hazardous waste incinerator under different operation conditions: Effective reduction strategies and an applicable correlation. Journal of the Energy Institute 107: 101186. https://doi.org/10.1016/j.joei.2023.101186.

    Article  CAS  Google Scholar 

  12. Zhong, R., Wang, C., Zhang, Z., et al. 2020. PCDD/F levels and phase distributions in a full-scale municipal solid waste incinerator with co-incinerating sewage sludge. Waste Management 106: 110–119. https://doi.org/10.1016/j.wasman.2020.03.020.

    Article  CAS  Google Scholar 

  13. Gao, H., Ni, Y., Zhang, H., et al. 2009. Stack gas emissions of PCDD/Fs from hospital waste incinerators in China. Chemosphere 77 (5): 634–639. https://doi.org/10.1016/j.chemosphere.2009.08.017.

    Article  CAS  Google Scholar 

  14. Giugliano, M., Cernuschi, S., Grosso, M., et al. 2002. PCDD/F mass balance in the flue gas cleaning units of a MSW incineration plant. Chemosphere 46 (9–10): 1321–1328. https://doi.org/10.1016/S0045-6535(01)00280-6.

    Article  CAS  Google Scholar 

  15. Chen, Z., Lin, X., Lu, S., et al. 2019. Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators. Chemical Engineering Journal 359: 1391–1399. https://doi.org/10.1016/j.cej.2018.11.039.

    Article  CAS  Google Scholar 

  16. Stanmore, B.R. 2004. The formation of dioxins in combustion systems. Combustion and Flame 136 (3): 398–427. https://doi.org/10.1016/j.combustflame.2003.11.004.

    Article  CAS  Google Scholar 

  17. Chen, Z., Lin, X., Zhang, S., et al. 2021. Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge for PCDD/Fs decomposition and reformation suppression. Journal of Hazardous Materials 416: 126216. https://doi.org/10.1016/j.jhazmat.2021.126216.

    Article  CAS  Google Scholar 

  18. Xiong, S., Peng, Y., Chen, K., et al. 2022. Phase distribution, migration and relationship of polychlorinated dibenzo-p-dioxins and dibenzofurans and heavy metals in a large-scale hazardous waste incinerator. Journal of Cleaner Production 341: 130764. https://doi.org/10.1016/j.jclepro.2022.130764.

    Article  CAS  Google Scholar 

  19. McKay, G. 2002. Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chemical Engineering Journal 86 (3): 343–368. https://doi.org/10.1016/S1385-8947(01)00228-5.

    Article  CAS  Google Scholar 

  20. Chang, M.B., Lin, J.-J., and Chang, S.-H. 2002. Characterization of dioxin emissions from two municipal solid waste incinerators in Taiwan. Atmospheric Environment 36 (2): 279–286. https://doi.org/10.1016/S1352-2310(01)00267-9.

    Article  CAS  Google Scholar 

  21. Chang, M.B., and Lin, J.J. 2001. Memory effect on the dioxin emissions from municipal waste incinerator in Taiwan. Chemosphere 45 (8): 1151–1157. https://doi.org/10.1016/S0045-6535(00)00571-3.

    Article  CAS  Google Scholar 

  22. Guo, X., Ma, Y., Lin, X., et al. 2020. Reduction of polychlorinated dibenzo-p-dioxins and dibenzofurans by chemical inhibition and physisorption from a municipal solid waste incineration system. Energy & Fuels 34 (9): 11237–11247. https://doi.org/10.1021/acs.energyfuels.0c01918.

    Article  CAS  Google Scholar 

  23. Chi, K.H., and Chang, M.B. 2005. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases. Environmental Science & Technology 39 (20): 8023–8031. https://doi.org/10.1021/es0501722.

    Article  CAS  Google Scholar 

  24. Lin, X., Ma, Y., Chen, Z., et al. 2020. Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator. Environmental Pollution 265: 114888. https://doi.org/10.1016/j.envpol.2020.114888.

    Article  CAS  Google Scholar 

  25. Peng, Y., Lu, S., Li, X., et al. 2020. Formation, measurement, and control of dioxins from the incineration of municipal solid wastes: Recent advances and perspectives. Energy & Fuels 34 (11): 13247–13267. https://doi.org/10.1021/acs.energyfuels.0c02446.

    Article  CAS  Google Scholar 

  26. Wang, P., Yan, F., Cai, J., et al. 2022. Emission levels and phase distributions of PCDD/Fs in a full-scale municipal solid waste incinerator: The impact of wet scrubber system. Journal of Cleaner Production 337: 130468. https://doi.org/10.1016/j.jclepro.2022.130468.

    Article  CAS  Google Scholar 

  27. Choi, K.-I., and Lee, D.-H. 2007. PCDD/DF concentrations at the inlets and outlets of wet scrubbers in Korean waste incinerators. Chemosphere 66 (2): 370–376. https://doi.org/10.1016/j.chemosphere.2006.04.094.

    Article  CAS  Google Scholar 

  28. Kreisz, S., Hunsinger, H., and Vogg, H. 1996. Wet scrubbers—A potential PCDD/F source? Chemosphere 32 (1): 73–78. https://doi.org/10.1016/0045-6535(95)00229-4.

    Article  CAS  Google Scholar 

  29. Ma, Y., Lin, X., Chen, T., et al. 2020. Field study on the emission characteristics of micro/trace pollutants and their correlations from medical waste incineration. Energy & Fuels 34 (12): 16381–16388. https://doi.org/10.1021/acs.energyfuels.0c03074.

    Article  CAS  Google Scholar 

  30. Trivedi, J., and Majumdar, D. 2013. Memory effect driven emissions of persistent organic pollutants from industrial thermal processes, their implications and management: A review. Journal of Environmental Management 119: 111–120. https://doi.org/10.1016/j.jenvman.2013.01.026.

    Article  CAS  Google Scholar 

  31. Ma, Y., Lin, X., Chen, Z., et al. 2020. Influence factors and mass balance of memory effect on PCDD/F emissions from the full-scale municipal solid waste incineration in China. Chemosphere 239: 124614. https://doi.org/10.1016/j.chemosphere.2019.124614.

    Article  CAS  Google Scholar 

  32. Ma, Y., Lin, X., Chen, Z., et al. 2019. Influences of P-N-containing inhibitor and memory effect on PCDD/F emissions during the full-scale municipal solid waste incineration. Chemosphere 228: 495–502. https://doi.org/10.1016/j.chemosphere.2019.04.161.

    Article  CAS  Google Scholar 

  33. Zhu, F., Li, X., Lu, J.-W., et al. 2018. Emission characteristics of PCDD/Fs in Stack gas from municipal solid waste incineration plants in Northern China. Chemosphere 200: 23–29. https://doi.org/10.1016/j.chemosphere.2018.02.092.

    Article  CAS  Google Scholar 

  34. Li, H.-W., Wang, L.-C., Chen, C.-C., et al. 2011. Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions. Journal of Hazardous Materials 185 (2–3): 1148–1155. https://doi.org/10.1016/j.jhazmat.2010.10.025.

    Article  CAS  Google Scholar 

  35. US EPA. 2017. Method 23 Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans from Stationary Sources.

  36. US EPA, O. Guidance for the Sampling and Analysis of Municipal Waste Combustion Ash for the Toxicity Characteristic. Available at: https://www.epa.gov/hw-sw846/guidance-sampling-and-analysis-municipal-waste-combustion-ash-toxicity-characteristic. Accessed 13 June 2022.

  37. US EPA. 1994. Method 1613: Tetra- Through Octa- Chlorinated Dioxins and Furans by Isotope Dilution.

  38. Yan, J., Chen, T., Li, X., et al. 2006. Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China. Journal of Hazardous Materials 135 (1–3): 47–51. https://doi.org/10.1016/j.jhazmat.2005.12.007.

    Article  CAS  Google Scholar 

  39. Ying, Y., Ma, Y., Li, X., et al. 2021. Emission characteristics and formation pathways of PCDD/Fs from cocombustion of municipal solid waste in a large-scale coal-fired power plant. Energy & Fuels 35 (9): 8221–8233. https://doi.org/10.1021/acs.energyfuels.1c00714.

    Article  CAS  Google Scholar 

  40. Chen, T., Zhan, M.-X., Lin, X.-Q., et al. 2014. Inhibition of the de Novo Synthesis of PCDD/Fs on model fly ash by sludge drying gases. Chemosphere 114: 226–232. https://doi.org/10.1016/j.chemosphere.2014.03.123.

    Article  CAS  Google Scholar 

  41. Lin, X., Jin, Y., Wu, H., et al. 2013. Removal of PCDD/Fs and PCBs from flue gas using a pilot gas cleaning system. Journal of Environmental Sciences 25 (9): 1833–1840. https://doi.org/10.1016/s1001-0742(12)60292-7.

    Article  CAS  Google Scholar 

  42. Bhavsar, S.P., Reiner, E.J., Hayton, A., et al. 2008. Converting toxic equivalents (TEQ) of dioxins and dioxin-like compounds in fish from one toxic equivalency factor (TEF) scheme to another. Environment International 34 (7): 915–921. https://doi.org/10.1016/j.envint.2008.02.001.

    Article  CAS  Google Scholar 

  43. Bei, J., Xu, X., Zhan, M., et al. 2022. Revealing the mechanism of dioxin formation from municipal solid waste gasification in a reducing atmosphere. Environmental Science & Technology 56 (20): 14539–14549. https://doi.org/10.1021/acs.est.2c05830.

    Article  CAS  Google Scholar 

  44. Ministry of Ecology and Environment of the People’s Republic of China. 2020. Standard for Pollution Control on Hazardous Waste Incineration.

  45. Lin, X., Chen, Z., Lu, S., et al. 2018. Emission characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans from the co-combustion of municipal solid waste in a lab-scale drop-tube furnace. Energy & Fuels 32 (4): 5396–5404. https://doi.org/10.1021/acs.energyfuels.8b00408.

    Article  CAS  Google Scholar 

  46. Xiao, Z.2010. Basic Study on the Physical-Chemical and Pyrolysis-Incineration Characteristics of Typical Components in Medical Wastes. Master Thesis. Hangzhou, China: Zhejiang University.

  47. Liu, G. 2006. Study on Thermal Treatment of Hazardous Wastes in Rotary Kilns. Ph.D. Thesis. Hangzhou, China: Zhejiang University.

  48. Ryu, J.-Y., Choi, K.-C., and Mulholland, J.A. 2006. Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofurna (PCDF) isomer patterns from municipal waste combustion: Formation mechanism fingerprints. Chemosphere 65 (9): 1526–1536. https://doi.org/10.1016/j.chemosphere.2006.04.002.

    Article  CAS  Google Scholar 

  49. Zhang, G., Hai, J., and Cheng, J. 2012. Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China. Waste Management 32 (6): 1156–1162. https://doi.org/10.1016/j.wasman.2012.01.024.

    Article  CAS  Google Scholar 

  50. Li, X.-W., Shibata, E., Kasai, E., et al. 2004. Vapor pressures and enthalpies of sublimation of 17 polychlorinated dibenzo-p-dioxins and five polychlorinated dibenzofurans. Environmental Toxicology and Chemistry 23 (2): 348. https://doi.org/10.1897/03-193.

    Article  CAS  Google Scholar 

  51. Mader, B.T., and Pankow, J.F. 2003. Vapor pressures of the polychlorinated dibenzodioxins (PCDDs) and the polychlorinated dibenzofurans (PCDFs). Atmospheric Environment 37 (22): 3103–3114. https://doi.org/10.1016/S1352-2310(03)00270-X.

    Article  CAS  Google Scholar 

  52. Williams, P.T. 2005. Dioxins and furans from the incineration of municipal solid waste: An overview. Journal of the Energy Institute 78 (1): 38–48. https://doi.org/10.1179/174602205X39579.

    Article  CAS  Google Scholar 

  53. Ministry of Ecology and Environment of the People’s Republic of China. 2008. Standard for Pollution Control on the Landfill Site of Municipal Solid Waste.

  54. Tang, Z., Huang, Q., and Yang, Y. 2013. PCDD/Fs in fly ash from waste incineration in China: A need for effective risk management. Environmental Science & Technology 47 (11): 5520–5521. https://doi.org/10.1021/es401463s.

    Article  CAS  Google Scholar 

  55. Cunliffe, A.M., and Williams, P.T. 2009. De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases. Waste Management 29 (2): 739–748. https://doi.org/10.1016/j.wasman.2008.04.004.

    Article  CAS  Google Scholar 

  56. Löthgren, C.-J., and van Bavel, B. 2005. Dioxin emissions after installation of a polishing wet scrubber in a hazardous waste incineration facility. Chemosphere 61 (3): 405–412. https://doi.org/10.1016/j.chemosphere.2005.02.015.

    Article  CAS  Google Scholar 

  57. Takaoka, M., Liao, P., Takeda, N., et al. 2003. The behavior of PCDD/Fs, PCBs, chlorobenzenes and chlorophenols in wet scrubbing system of municipal solid waste incinerator. Chemosphere 53 (2): 153–161. https://doi.org/10.1016/S0045-6535(03)00437-5.

    Article  CAS  Google Scholar 

  58. Choi, K.-I., Lee, D.-H., Osako, M., et al. 2007. The prediction of PCDD/DF levels in wet scrubbers associated with waste incinerators. Chemosphere 66 (6): 1131–1137. https://doi.org/10.1016/j.chemosphere.2006.06.019.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (No. 2020YFC1910100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoqing Lin or Jisheng Long.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 546 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Ma, Y., Lin, X. et al. Emission control and phase migration of PCDD/Fs in a rotary kiln incinerator: hazardous vs medical waste incineration. Waste Dispos. Sustain. Energy 5, 395–406 (2023). https://doi.org/10.1007/s42768-023-00143-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-023-00143-5

Keywords

Navigation