Skip to main content
Log in

Left-Right Symmetric Fermions and Sterile Neutrinos from Complex Split Biquaternions and Bioctonions

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this article we investigate the application of complex split biquaternions and bioctonions to the standard model. We show that the Clifford algebras Cl(3) and Cl(7) can be used for making left-right symmetric fermions. Hence we incorporate right-handed neutrinos in the division algebras-based approach to the standard model. The right-handed neutrinos, or sterile neutrinos, are a potential dark-matter candidate. Using the division algebra approach, we discuss the left-right symmetric fermions and their phenomenology. We describe the gauge groups associated with the left-right symmetric model and prospects for unification through division algebras. We briefly discuss the possibility of obtaining three generations of fermions and charge/mass ratios through the exceptional Jordan algebra \(J_3(O)\) and the exceptional groups \(F_4\) and \(E_6\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ablamowicz, R.: Construction of Spinors via Witt Decomposition and Primitive Idempotents: A Review. Clifford Algebras and Spinor Structures. Kluwer Academic Publishers, Amsterdam (1995)

    Book  MATH  Google Scholar 

  2. Adler, S.L.: Quantum Theory as an Emergent Phenomenon. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Ahmad, Q.R., et al.: Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett. 89, 011301 (2002)

    Article  ADS  Google Scholar 

  4. Baez, J.C.: Exceptional Quantum Geometry and Particle Physics, The n-Category Cafe. https://golem.ph.utexas.edu/category/2018/ 08/exceptional_quantum_geometry_a.htmld. 27 Aug. (2018)

  5. Baez, J.C.: The octonions. arXiv:math/0105155 (2001)

  6. Baez, J.C., Huerta, J.: Division algebras and supersymmetry II. Adv. Math. Theor. Phys. 15, 1373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhatt, V., Mondal, R., Vaibhav, V., Singh, T.P.: Exceptional Jordan algebra, Majorana neutrinos, and mass ratios of charged fermions. J. Phys. G Nucl. Part. Phys. 18, 045007 (2022)

  8. Boyle, L.: The standard model, the exceptional Jordan algebra, and triality, e-print, arXiv:2006.16265v1 [hep-th] (2020)

  9. Clifford, W.K.: Applications of Grassmann’s extensive algebra. Am. J. Math. 1(4), 350–358 (1878)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dixon, G.M.: Division Algebras, Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics. Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

  11. Dray, T., Manogue, C.: The exceptional Jordan eigenvalue problem. Int. J. Theor. Phys. 28, 2901 (1999). arXiv:math-ph/9910004v2

    Article  MathSciNet  MATH  Google Scholar 

  12. Dror, J.A., Dunsky, D., Hall, L.J., Harigaya, K.: Sterile neutrino dark matter in left-right theories. arXiv:2004.09511 [hep-ph]

  13. Dubois-Violette, M.: Exceptional quantum geometry and particle physics. Nucl. Phys. B 912, 426–449 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fukuda, Y., et al.: (Super-Kamiokande Collaboration) evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562 (1998)

    Article  ADS  Google Scholar 

  15. Furey, C.: Standard model physics from an algebra? Ph.D. thesis, University of Waterloo. arXiv:1611.09182 [hep-th] (2015)

  16. Furey, C.: Three generations, two unbroken gauge symmetries, and one eight-dimensional algebra. Phys. Lett. B 785, 1984 (2018)

    Article  MATH  Google Scholar 

  17. Furey, C.: \(SU(3)C \times SU(2)L \times U(1)Y (\times U(1)X)\) as a symmetry of division algebraic ladder operators. Euro. Phys. J. C 78, 375 (2018)

    Article  ADS  Google Scholar 

  18. Gallier, J.: Algebras Clifford, Groups Clifford and a Generalization of the Quaternions: The Pin and Spin Groups. https://www.cis.upenn.edu/~cis610/clifford.pdf

  19. Gillard, A.B., Gresnigt, N.G.: Three fermion generations with two unbroken gauge symmetries from the complex sedenions. Eur. Phys. J. C 79, 446 (2019)

    Article  ADS  Google Scholar 

  20. Gunaydin, M., Gursey, F.: Quark structure and octonions. J. Math. Phys. 14, 1651 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  21. Hall, L.J., Harigaya, K.: Implications of Higgs discovery for the strong CP problem and unification. JHEP 10, 130 (2018). https://doi.org/10.1007/JHEP10(2018)130. arXiv:1803.08119 [hep-ph]

    Article  ADS  Google Scholar 

  22. Hall, L.J., Harigaya, K.: Higgs parity grand unification. JHEP 11, 033 (2019). https://doi.org/10.1007/JHEP11(2019)033. arXiv:1905.12722 [hep-ph]

    Article  ADS  Google Scholar 

  23. Jivet, G.: Opérateurs de Dirac et équations de Maxwell. Commentarii Mathematici Helvetici (in French). 2, 225–235 (1930). https://doi.org/10.1007/BF01214461. (S2CID 121226923)

  24. Kaushik, P., Vaibhav, V., Singh, T.P.: An \(E_8\times E_8\) unification of the standard model with pre-gravitation on an octonion-valued twistor space. arXiv:2206.06911 [hep-ph]

  25. Landi, G., Rovelli, C.: General relativity in terms of dirac eigenvalues. Phys. Rev. Lett. 78, 3051 (1997). arXiv:gr-qc/9612034

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Lisi, G.: An exceptionally simple theory of everything (2007). arXiv:0711.0770

  27. Manogue, C.A., Dray, T.: Dimensional reduction. Mod. Phys. Lett. A 14(02), 99–103 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. Manogue, C.A., Dray, T., Wilson, R.A.: Octions: an \(E_8\) description of the Standard Model. J. Math. Phys. 63(8), 081703 (2022)

    Article  ADS  MATH  Google Scholar 

  29. Meghraj, M.S., Pandey, A., Singh, T.P.: Why does the Kerr–Newman black hole have the same gyromagnetic ratio as electron? arXiv:2006.05392 (2020)

  30. Melfo, A., Senjanovic, G.: Neutrino: chronicles of an aloof protagonist. arXiv:2107.05472 [physics.hist-ph]

  31. Mohapatra, R.N., Pati, J.C.: A natural left-right symmetry. Phys. Rev. D 11, 2558 (1975)

    Article  ADS  Google Scholar 

  32. Mohapatra, R.N., Senjanovic, G.: Neutrino mass and spontaneous parity nonconservation. Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  MATH  Google Scholar 

  33. Palemkota, M., Singh, T.P.: Proposal for a new quantum theory of gravity III: Equations for quantum gravity, and the origin of spontaneous localisation. Zeitschrift fur Naturforschung A 75, 143 (2019). https://doi.org/10.1515/zna-2019-0267. arXiv:1908.04309

    Article  ADS  Google Scholar 

  34. Pati, J.C., Salam, A.: Lepton number as the fourth color. Phys. Rev. D 10, 275–289 (1974) (Erratum: Phys. Rev. D 11, 703-703 (1975))

  35. Raj, S., Singh, T.P.: A Lagrangian with \(E_8\times E_8\) symmetry for the standard model and pre-gravitation I. The bosonic Lagrangian, and a theoretical derivation of the weak mixing angle. arXiv:2208.09811 [hep-ph]

  36. Riesz, M.: Clifford Numbers and Spinors. Kluwer, Dordrecht (1993). (Reprint of Riesz 's lectures at the University of Maryland. Edited by E. Folke Bolinder and Pertti Lounesto (1958))

    Book  MATH  Google Scholar 

  37. Sauter, F.: Lösung der Diracschen Gleichungen ohne Spezialisierung der Diracschen Operatoren. Zeitschrift für Physik. 63(11–12), 803–814 (1930). https://doi.org/10.1007/BF01339277. (S2CID 122940202)

  38. Senjanovic, G., Mohapatra, R.N.: Exact left-right symmetry and spontaneous violation of parity. Phys. Rev. D 12, 1502 (1975)

    Article  ADS  Google Scholar 

  39. Singh, T.P.: Trace dynamics and division algebras: towards quantum gravity and unification. Zeitschrift fur Naturforschung A 76, 131 (2020). https://doi.org/10.1515/zna-2020-0255. arXiv:2009.05574v44 [hep-th]

    Article  ADS  Google Scholar 

  40. Singh, T.P.: Spontaneous quantum gravity. JHEP Gravit. Cosmol. 7, 880 (2020). arXiv:1912.03266v2

    Google Scholar 

  41. Singh, T.P.: From quantum foundations to quantum gravity: an overview of the new theory. Zeitschrift fur Naturforschung A 75, 833 (2020). arXiv:1909.06340 [gr-qc]

    Article  ADS  Google Scholar 

  42. Singh, T.P.: Quantum gravity effects in the infrared: a theoretical derivation of the low energy fine structure constant and mass-ratios of elementary particles. Eur. Phys. J. Plus 137, 664 (2022)

    Article  Google Scholar 

  43. Stoica, O.C.: The standard model algebra (Leptons, quarks and gauge from the complex algebra Cl(6)). Adv. Appl. Clifford Algebras 28, 52 (2018). arXiv:1702.04336

    Article  MATH  Google Scholar 

  44. Todorov, I., Dubois-Violette, M.: Deducing the symmetry of the Standard Model from the automorphism and structure groups of the exceptional Jordan algebra Int. J. Mod. Phys. A 33, 1850118 (2018). arXiv:1806.09450 [hep-th]

  45. Trayling, G.: A geometric approach to the Standard Model. Preprint arXiv:hep-th/9912231 (1999)

  46. Trayling, G., Baylis, W.: A geometric basis for the standard-model gauge group. J. Phys. A Math. Theor. 34(15), 3309 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Trayling, G., Baylis, W.E.: The \(Cl_7\) Approach to the Standard Model. In: Ablamowicz, R. (ed.) Clifford Algebras: Applications to Mathematics, Physics, and Engineering, pp. 547–558. Birkhauser Boston, Boston (2004)

    Chapter  MATH  Google Scholar 

  48. Wilson, R.A.: Chirality in an \(E_8\) model of elementary particles (2022). arXiv:2210.06029 [physics.gen-ph]

  49. Wilson, R.A.: On the problem of choosing subgroups of Clifford algebras for applications in fundamental physics. Adv. Appl. Clifford Algebras 31, 59 (2021). arXiv:2011.05171 [math.RA]

    Article  MathSciNet  MATH  Google Scholar 

  50. Woit, P.: Euclidean twistor unification (2021). arXiv:2104.05099 [hep-th]

  51. Yokota, I.: Exceptional lie groups (2009). arXiv:0902043 [math.DG]

Download references

Acknowledgements

It is a pleasure to thank Vivan Bhatt, Priyank Kaushik, Rajrupa Mondal, and Robert Wilson for several helpful discussions. The authors are very thankful to the referees for their feedback and for playing a crucial role in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejinder P. Singh.

Additional information

Communicated by Uwe Kaehler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaibhav, V., Singh, T.P. Left-Right Symmetric Fermions and Sterile Neutrinos from Complex Split Biquaternions and Bioctonions. Adv. Appl. Clifford Algebras 33, 32 (2023). https://doi.org/10.1007/s00006-023-01278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-023-01278-8

Navigation