1932

Abstract

Because the central nervous system is largely nonrenewing, neurons and their synapses must be maintained over the lifetime of an individual to ensure circuit function. Age is a dominant risk factor for neural diseases, and declines in nervous system function are a common feature of aging even in the absence of disease. These alterations extend to the visual system and, in particular, to the retina. The retina is a site of clinically relevant age-related alterations but has also proven to be a uniquely approachable system for discovering principles that govern neural aging because it is well mapped, contains diverse neuron types, and is experimentally accessible. In this article, we review the structural and molecular impacts of aging on neurons within the inner and outer retina circuits. We further discuss the contribution of non-neuronal cell types and systems to retinal aging outcomes. Understanding how and why the retina ages is critical to efforts aimed at preventing age-related neural decline and restoring neural function.

Keyword(s): agingneuronretinasynapse
Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-112122-020950
2023-09-15
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/vision/9/1/annurev-vision-112122-020950.html?itemId=/content/journals/10.1146/annurev-vision-112122-020950&mimeType=html&fmt=ahah

Literature Cited

  1. Aggarwal P, Nag TC, Wadhwa S. 2007. Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J. Biosci. 32:293–98
    [Google Scholar]
  2. Alessi DR, Sakamoto K, Bayascas JR. 2006. LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75:137–63
    [Google Scholar]
  3. Anderson SR, Roberts JM, Ghena N, Irvin EA, Schwakopf J et al. 2022. Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence. eLife 11:e76564
    [Google Scholar]
  4. Anderson SR, Roberts JM, Zhang J, Steele MR, Romero CO et al. 2019. Developmental apoptosis promotes a disease-related gene signature and independence from CSF1R signaling in retinal microglia. Cell Rep 27:2002–13.e5
    [Google Scholar]
  5. Apfeld J, O'Connor G, McDonagh T, DiStefano PS, Curtis R. 2004. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 18:3004–9
    [Google Scholar]
  6. Barclay AN, Brown MH. 2006. The SIRP family of receptors and immune regulation. Nat. Rev. Immunol. 6:457–64
    [Google Scholar]
  7. Behrens C, Schubert T, Haverkamp S, Euler T, Berens P 2016. Connectivity map of bipolar cells and photoreceptors in the mouse retina. eLife 5:e20041
    [Google Scholar]
  8. Belforte N, Agostinone J, Alarcon-Martinez L, Villafranca-Baughman D, Dotigny F et al. 2021. AMPK hyperactivation promotes dendrite retraction, synaptic loss, and neuronal dysfunction in glaucoma. Mol. Neurodegener. 16:43
    [Google Scholar]
  9. Bhattacharya A, Kaushik DK, Lozinski BM, Yong VW. 2020. Beyond barrier functions: roles of pericytes in homeostasis and regulation of neuroinflammation. J. Neurosci. Res. 98:2390–405
    [Google Scholar]
  10. Bodea LG, Wang Y, Linnartz-Gerlach B, Kopatz J, Sinkkonen L et al. 2014. Neurodegeneration by activation of the microglial complement-phagosome pathway. J. Neurosci. 34:8546–56
    [Google Scholar]
  11. Borucki DM, Toutonji A, Couch C, Mallah K, Rohrer B, Tomlinson S. 2020. Complement-mediated microglial phagocytosis and pathological changes in the development and degeneration of the visual system. Front. Immunol. 11:566892
    [Google Scholar]
  12. Bosco A, Anderson SR, Breen KT, Romero CO, Steele MR et al. 2018. Complement C3-targeted gene therapy restricts onset and progression of neurodegeneration in chronic mouse glaucoma. Mol. Ther. 26:2379–96
    [Google Scholar]
  13. Bosco A, Inman DM, Steele MR, Wu G, Soto I et al. 2008. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Investig. Ophthalmol. Vis. Sci. 49:1437–46
    [Google Scholar]
  14. Brown MC, Holland RL, Hopkins WG. 1981. Motor nerve sprouting. Annu. Rev. Neurosci. 4:17–42
    [Google Scholar]
  15. Burger CA, Jiang D, Li F, Samuel MA. 2020. C1q regulates horizontal cell neurite confinement in the outer retina. Front. Neural Circuits 14:583391
    [Google Scholar]
  16. Burger CA, Jiang D, Mackin RD, Samuel MA. 2021. Development and maintenance of vision's first synapse. Dev. Biol. 476:218–39
    [Google Scholar]
  17. Burke SN, Barnes CA. 2006. Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7:30–40
    [Google Scholar]
  18. Burkewitz K, Zhang Y, Mair WB. 2014. AMPK at the nexus of energetics and aging. Cell Metab. 20:10–25
    [Google Scholar]
  19. Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellivol M, Brown GC. 2021. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J. Neurochem. 158:621–39
    [Google Scholar]
  20. Cajochen C, Munch M, Knoblauch V, Blatter K, Wirz-Justice A. 2006. Age-related changes in the circadian and homeostatic regulation of human sleep. Chronobiol. Int. 23:461–74
    [Google Scholar]
  21. Carras PL, Coleman PA, Miller RF. 1992. Site of action potential initiation in amphibian retinal ganglion cells. J. Neurophysiol. 67:292–304
    [Google Scholar]
  22. Castellano JM, Mosher KI, Abbey RJ, McBride AA, James ML et al. 2017. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 544:488–92
    [Google Scholar]
  23. Cepko C. 2014. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 15:615–27
    [Google Scholar]
  24. Chen SK, Badea TC, Hattar S. 2011. Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95
    [Google Scholar]
  25. Chuang W, Lagenaur CF. 1990. Central nervous system antigen P84 can serve as a substrate for neurite outgrowth. Dev. Biol. 137:219–32
    [Google Scholar]
  26. Combadiere C, Feumi C, Raoul W, Keller N, Rodero M et al. 2007. CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J. Clin. Investig. 117:2920–28
    [Google Scholar]
  27. Cordella A, Krashia P, Nobili A, Pignataro A, La Barbera L et al. 2018. Dopamine loss alters the hippocampus-nucleus accumbens synaptic transmission in the Tg2576 mouse model of Alzheimer's disease. Neurobiol. Dis. 116:142–54
    [Google Scholar]
  28. Corso-Diaz X, Gentry J, Rebernick R, Jaeger C, Brooks MJ et al. 2020. Genome-wide profiling identifies DNA methylation signatures of aging in rod photoreceptors associated with alterations in energy metabolism. Cell Rep. 31:107525
    [Google Scholar]
  29. Croll SD, Ip NY, Lindsay RM, Wiegand SJ. 1998. Expression of BDNF and trkB as a function of age and cognitive performance. Brain Res. 812:200–8
    [Google Scholar]
  30. Cunea A, Powner MB, Jeffery G. 2014. Death by color: differential cone loss in the aging mouse retina. Neurobiol. Aging 35:2584–91
    [Google Scholar]
  31. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. 1990. Human photoreceptor topography. J. Comp. Neurol. 292:497–523
    [Google Scholar]
  32. Damani MR, Zhao L, Fontainhas AM, Amaral J, Fariss RN, Wong WT. 2011. Age-related alterations in the dynamic behavior of microglia. Aging Cell 10:263–76
    [Google Scholar]
  33. de Brabander JM, Kramers RJ, Uylings HB. 1998. Layer-specific dendritic regression of pyramidal cells with ageing in the human prefrontal cortex. Eur. J. Neurosci. 10:1261–69
    [Google Scholar]
  34. Di Iorio A, Abate M, Di Renzo D, Russolillo A, Battaglini C et al. 2006. Sarcopenia: age-related skeletal muscle changes from determinants to physical disability. Int. J. Immunopathol. Pharmacol. 19:703–19
    [Google Scholar]
  35. Dickstein DL, Kabaso D, Rocher AB, Luebke JI, Wearne SL, Hof PR. 2007. Changes in the structural complexity of the aged brain. Aging Cell 6:275–84
    [Google Scholar]
  36. Dorrell MI, Aguilar E, Jacobson R, Trauger SA, Friedlander J et al. 2010. Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy. Glia 58:43–54
    [Google Scholar]
  37. Dreher Z, Robinson SR, Distler C. 1992. Muller cells in vascular and avascular retinae: a survey of seven mammals. J. Comp. Neurol. 323:59–80
    [Google Scholar]
  38. Eldred GE, Lasky MR. 1993. Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361:724–26
    [Google Scholar]
  39. Eliasieh K, Liets LC, Chalupa LM. 2007. Cellular reorganization in the human retina during normal aging. Investig. Ophthalmol. Vis. Sci. 48:2824–30
    [Google Scholar]
  40. Elliott D, Whitaker D, MacVeigh D. 1990. Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes. Vis. Res. 30:541–47
    [Google Scholar]
  41. Eriksson U, Alm A. 2009. Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br. J. Ophthalmol. 93:1448–52
    [Google Scholar]
  42. Esquiva G, Lax P, Perez-Santonja JJ, Garcia-Fernandez JM, Cuenca N. 2017. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. . Front Aging Neurosci. 9:79
    [Google Scholar]
  43. Feeney-Burns L, Hilderbrand ES, Eldridge S. 1984. Aging human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Investig. Ophthalmol. Vis. Sci. 25:195–200
    [Google Scholar]
  44. Feigl B, Mattes D, Thomas R, Zele AJ. 2011. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Investig. Ophthalmol. Vis. Sci. 52:4362–67
    [Google Scholar]
  45. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT et al. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 1:41–51
    [Google Scholar]
  46. Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM et al. 2018. Light affects mood and learning through distinct retina-brain pathways. Cell 175:71–84.e18
    [Google Scholar]
  47. Foster TC. 2007. Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell 6:319–25
    [Google Scholar]
  48. Frost JL, Schafer DP. 2016. Microglia: architects of the developing nervous system. Trends Cell Biol. 26:587–97
    [Google Scholar]
  49. Fruttiger M, Calver AR, Kruger WH, Mudhar HS, Michalovich D et al. 1996. PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17:1117–31
    [Google Scholar]
  50. Gao H, Hollyfield JG. 1992. Aging of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Investig. Ophthalmol. Vis. Sci. 33:1–17
    [Google Scholar]
  51. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A et al. 2005. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–34
    [Google Scholar]
  52. Gittings NS, Fozard JL. 1986. Age related changes in visual acuity. Exp. Gerontol. 21:423–33
    [Google Scholar]
  53. Gresh J, Goletz PW, Crouch RK, Rohrer B. 2003. Structure-function analysis of rods and cones in juvenile, adult, and aged C57bl/6 and Balb/c mice. Vis. Neurosci. 20:211–20
    [Google Scholar]
  54. Grill JD, Riddle DR. 2002. Age-related and laminar-specific dendritic changes in the medial frontal cortex of the rat. Brain Res. 937:8–21
    [Google Scholar]
  55. Gu X, Neric NJ, Crabb JS, Crabb JW, Bhattacharya SK et al. 2012. Age-related changes in the retinal pigment epithelium (RPE). PLOS ONE 7:e38673
    [Google Scholar]
  56. Gupta N, Brown KE, Milam AH. 2003. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp. Eye Res. 76:463–71
    [Google Scholar]
  57. Gupta V, You Y, Li J, Gupta V, Golzan M et al. 2014. BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma. Biochim. Biophys. Acta 1842:1567–78
    [Google Scholar]
  58. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A et al. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30:214–26
    [Google Scholar]
  59. Harman A, Abrahams B, Moore S, Hoskins R 2000. Neuronal density in the human retinal ganglion cell layer from 16–77 years. Anat. Rec. 260:124–31
    [Google Scholar]
  60. Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A et al. 2009. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat. Genet. 41:1088–93
    [Google Scholar]
  61. He C, Liu Y, Huang Z, Yang Z, Zhou T et al. 2021. A specific RIP3+ subpopulation of microglia promotes retinopathy through a hypoxia-triggered necroptotic mechanism. PNAS 118:e2023290118
    [Google Scholar]
  62. Herrera MD, Mingorance C, Rodriguez-Rodriguez R, Alvarez de Sotomayor M 2010. Endothelial dysfunction and aging: an update. Ageing Res. Rev. 9:142–52
    [Google Scholar]
  63. Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG et al. 2012. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J. Clin. Investig. 122:1246–61
    [Google Scholar]
  64. Iadecola C. 2017. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron 96:17–42
    [Google Scholar]
  65. Ikematsu N, Dallas ML, Ross FA, Lewis RW, Rafferty JN et al. 2011. Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. PNAS 108:18132–37
    [Google Scholar]
  66. Ingram NT, Sampath AP, Fain GL. 2016. Why are rods more sensitive than cones?. J. Physiol. 594:5415–26
    [Google Scholar]
  67. Inoue A, Sanes JR. 1997. Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276:1428–31
    [Google Scholar]
  68. Jackson GR, Ortega J, Girkin C, Rosenstiel CE, Owsley C. 2002. Aging-related changes in the multifocal electroretinogram. J. Opt. Soc. Am. A 19:185–89
    [Google Scholar]
  69. Jackson GR, Owsley C, McGwin G Jr. 1999. Aging and dark adaptation. Vis. Res. 39:3975–82
    [Google Scholar]
  70. Jacobi A, Tran NM, Yan W, Benhar I, Tian F et al. 2022. Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron 110:2625–45.e7
    [Google Scholar]
  71. Jay JL, Mammo RB, Allan D. 1987. Effect of age on visual acuity after cataract extraction. Br. J. Ophthalmol. 71:112–15
    [Google Scholar]
  72. Jiang D, Burger CA, Akhanov V, Liang JH, Mackin RD et al. 2022. Neuronal signal-regulatory protein alpha drives microglial phagocytosis by limiting microglial interaction with CD47 in the retina. Immunity 55:2318–35.e7
    [Google Scholar]
  73. Jiang P, Lagenaur CF, Narayanan V. 1999. Integrin-associated protein is a ligand for the P84 neural adhesion molecule. J. Biol. Chem. 274:559–62
    [Google Scholar]
  74. Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS et al. 2017. Stimulation of functional neuronal regeneration from Muller glia in adult mice. Nature 548:103–7
    [Google Scholar]
  75. Katz ML, Robison WG Jr. 1986. Evidence of cell loss from the rat retina during senescence. Exp. Eye Res. 42:293–304
    [Google Scholar]
  76. Kawasaki A, Crippa SV, Kardon R, Leon L, Hamel C. 2012. Characterization of pupil responses to blue and red light stimuli in autosomal dominant retinitis pigmentosa due to NR2E3 mutation. Investig. Ophthalmol. Vis. Sci. 53:5562–69
    [Google Scholar]
  77. Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A. 1997. A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 386:181–86
    [Google Scholar]
  78. Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR. 2008. Molecular identification of a retinal cell type that responds to upward motion. Nature 452:478–82
    [Google Scholar]
  79. Kisler K, Nelson AR, Montagne A, Zlokovic BV. 2017. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18:419–34
    [Google Scholar]
  80. Kolesnikov AV, Fan J, Crouch RK, Kefalov VJ. 2010. Age-related deterioration of rod vision in mice. J. Neurosci. 30:11222–31
    [Google Scholar]
  81. Kramer J, Chirco KR, Lamba DA. 2019. Immunological considerations for retinal stem cell therapy. Adv. Exp. Med. Biol. 1186:99–119
    [Google Scholar]
  82. Kumari A, Ayala-Ramirez R, Zenteno JC, Huffman K, Sasik R et al. 2022. Single cell RNA sequencing confirms retinal microglia activation associated with early onset retinal degeneration. Sci. Rep. 12:15273
    [Google Scholar]
  83. La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R et al. 2016. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann. Neurol. 79:90–109
    [Google Scholar]
  84. Lefebvre JL, Sanes JR, Kay JN. 2015. Development of dendritic form and function. Annu. Rev. Cell Dev. Biol. 31:741–77
    [Google Scholar]
  85. Lehrman EK, Wilton DK, Litvina EY, Welsh CA, Chang ST et al. 2018. CD47 protects synapses from excess microglia-mediated pruning during development. Neuron 100:120–34.e6
    [Google Scholar]
  86. Li C, Cheng M, Yang H, Peachey NS, Naash MI. 2001. Age-related changes in the mouse outer retina. Optom. Vis. Sci. 78:425–30
    [Google Scholar]
  87. Li F, Jiang D, Samuel MA. 2019. Microglia in the developing retina. Neural Dev. 14:12
    [Google Scholar]
  88. Li Z, Zeng Y, Chen X, Li Q, Wu W et al. 2016. Neural stem cells transplanted to the subretinal space of rd1 mice delay retinal degeneration by suppressing microglia activation. Cytotherapy 18:771–84
    [Google Scholar]
  89. Liao DS, Grossi FV, El Mehdi D, Gerber MR, Brown DM et al. 2020. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology 127:186–95
    [Google Scholar]
  90. Liets LC, Eliasieh K, van der List DA, Chalupa LM. 2006. Dendrites of rod bipolar cells sprout in normal aging retina. PNAS 103:12156–60
    [Google Scholar]
  91. Lin MS, Liao PY, Chen HM, Chang CP, Chen SK, Chern Y. 2019. Degeneration of ipRGCs in mouse models of Huntington's disease disrupts non-image-forming behaviors before motor impairment. J. Neurosci. 39:1505–24
    [Google Scholar]
  92. Lin S, Guo J, Chen S. 2019. Transcriptome and DNA methylome signatures associated with retinal Muller glia development, injury response, and aging. Investig. Ophthalmol. Vis. Sci. 60:4436–50
    [Google Scholar]
  93. Lom B, Cogen J, Sanchez AL, Vu T, Cohen-Cory S. 2002. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo. J. Neurosci. 22:7639–49
    [Google Scholar]
  94. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P. 2013. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 14:401–16
    [Google Scholar]
  95. Ma W, Silverman SM, Zhao L, Villasmil R, Campos MM et al. 2019. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. eLife 8:e42049
    [Google Scholar]
  96. Madeira MH, Boia R, Santos PF, Ambrosio AF, Santiago AR. 2015. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediat. Inflamm. 2015:673090
    [Google Scholar]
  97. Martersteck EM, Hirokawa KE, Evarts M, Bernard A, Duan X et al. 2017. Diverse central projection patterns of retinal ganglion cells. Cell Rep. 18:2058–72
    [Google Scholar]
  98. Martins RR, Zamzam M, Tracey-White D, Moosajee M, Thummel R et al. 2022. Muller glia maintain their regenerative potential despite degeneration in the aged zebrafish retina. Aging Cell 21:e13597
    [Google Scholar]
  99. Maxeiner S, Luo F, Tan A, Schmitz F, Sudhof TC. 2016. How to make a synaptic ribbon: RIBEYE deletion abolishes ribbons in retinal synapses and disrupts neurotransmitter release. EMBO J. 35:1098–114
    [Google Scholar]
  100. Maynard ML, Zele AJ, Feigl B. 2015. Melanopsin-mediated post-illumination pupil response in early age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 56:6906–13
    [Google Scholar]
  101. Menon M, Mohammadi S, Davila-Velderrain J, Goods BA, Cadwell TD et al. 2019. Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat. Commun. 10:4902
    [Google Scholar]
  102. Mi ZP, Jiang P, Weng WL, Lindberg FP, Narayanan V, Lagenaur CF. 2000. Expression of a synapse-associated membrane protein, P84/SHPS-1, and its ligand, IAP/CD47, in mouse retina. J. Comp. Neurol. 416:335–44
    [Google Scholar]
  103. Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD et al. 2020. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 581:71–76
    [Google Scholar]
  104. Morin LP, Studholme KM. 2014. Retinofugal projections in the mouse. J. Comp. Neurol. 522:3733–53
    [Google Scholar]
  105. Morquette B, Morquette P, Agostinone J, Feinstein E, McKinney RA et al. 2015. REDD2-mediated inhibition of mTOR promotes dendrite retraction induced by axonal injury. Cell Death Differ. 22:612–25
    [Google Scholar]
  106. Morrison JH, Baxter MG. 2012. The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat. Rev. Neurosci. 13:240–50
    [Google Scholar]
  107. Morrison JH, Hof PR. 1997. Life and death of neurons in the aging brain. Science 278:412–19
    [Google Scholar]
  108. Mukai R, Okunuki Y, Husain D, Kim CB, Lambris JD, Connor KM. 2018. The complement system is critical in maintaining retinal integrity during aging. Front. Aging Neurosci. 10:15
    [Google Scholar]
  109. Mukherjee K, Yang X, Gerber SH, Kwon HB, Ho A et al. 2010. Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. PNAS 107:6504–9
    [Google Scholar]
  110. Myers BL, Badia P. 1995. Changes in circadian rhythms and sleep quality with aging: mechanisms and interventions. Neurosci. Biobehav. Rev. 19:553–71
    [Google Scholar]
  111. Nguyen MT, Vemaraju S, Nayak G, Odaka Y, Buhr ED et al. 2019. An opsin 5-dopamine pathway mediates light-dependent vascular development in the eye. Nat. Cell Biol. 21:420–29
    [Google Scholar]
  112. Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D et al. 2017. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nat. Commun. 8:14727
    [Google Scholar]
  113. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A et al. 2019. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science 365:eaav9518
    [Google Scholar]
  114. O'Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL et al. 2019. Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50:723–37.e7
    [Google Scholar]
  115. Okunuki Y, Mukai R, Nakao T, Tabor SJ, Butovsky O et al. 2019. Retinal microglia initiate neuroinflammation in ocular autoimmunity. PNAS 116:9989–98
    [Google Scholar]
  116. Okunuki Y, Mukai R, Pearsall EA, Klokman G, Husain D et al. 2018. Microglia inhibit photoreceptor cell death and regulate immune cell infiltration in response to retinal detachment. PNAS 115:E6264–73
    [Google Scholar]
  117. Oldenborg PA, Gresham HD, Lindberg FP. 2001. CD47-signal regulatory protein alpha (SIRPalpha) regulates Fcgamma and complement receptor-mediated phagocytosis. J. Exp. Med. 193:855–62
    [Google Scholar]
  118. Oldenborg PA, Zheleznyak A, Fang YF, Lagenaur CF, Gresham HD, Lindberg FP. 2000. Role of CD47 as a marker of self on red blood cells. Science 288:2051–54
    [Google Scholar]
  119. Ordy JM, Brizee KR, Hansche J. 1980. Visual acuity and foveal cone density in the retina of the aged rhesus monkey. Neurobiol. Aging 1:133–40
    [Google Scholar]
  120. O'Sullivan ML, Punal VM, Kerstein PC, Brzezinski JAT, Glaser T et al. 2017. Astrocytes follow ganglion cell axons to establish an angiogenic template during retinal development. Glia 65:1697–716
    [Google Scholar]
  121. Palmer AL, Ousman SS 2018. Astrocytes and aging. Front. Aging Neurosci. 10:337
    [Google Scholar]
  122. Palmer AM, DeKosky ST. 1993. Monoamine neurons in aging and Alzheimer's disease. J. Neural Transm. Gen. Sect. 91:135–59
    [Google Scholar]
  123. Pan C, Banerjee K, Lehmann GL, Almeida D, Hajjar KA et al. 2021. Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. PNAS 118:e2100122118
    [Google Scholar]
  124. Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K, Liu A. 2019. Dopamine and dopamine receptors in Alzheimer's disease: a systematic review and network meta-analysis. Front. Aging Neurosci. 11:175
    [Google Scholar]
  125. Paolicelli RC, Sierra A, Stevens B, Tremblay ME, Aguzzi A et al. 2022. Microglia states and nomenclature: a field at its crossroads. Neuron 110:3458–83
    [Google Scholar]
  126. Parapuram SK, Cojocaru RI, Chang JR, Khanna R, Brooks M et al. 2010. Distinct signature of altered homeostasis in aging rod photoreceptors: implications for retinal diseases. PLOS ONE 5:e13885
    [Google Scholar]
  127. Paredes I, Himmels P, Ruiz de Almodovar C 2018. Neurovascular communication during CNS development. Dev. Cell 45:10–32
    [Google Scholar]
  128. Peng B, Xiao J, Wang K, So KF, Tipoe GL, Lin B. 2014. Suppression of microglial activation is neuroprotective in a mouse model of human retinitis pigmentosa. J. Neurosci. 34:8139–50
    [Google Scholar]
  129. Peng YR, Tran NM, Krishnaswamy A, Kostadinov D, Martersteck EM, Sanes JR. 2017. Satb1 regulates contactin 5 to pattern dendrites of a mammalian retinal ganglion cell. Neuron 95:869–83.e6
    [Google Scholar]
  130. Petros TJ, Bryson JB, Mason C. 2010. Ephrin-B2 elicits differential growth cone collapse and axon retraction in retinal ganglion cells from distinct retinal regions. Dev. Neurobiol. 70:781–94
    [Google Scholar]
  131. Punal VM, Paisley CE, Brecha FS, Lee MA, Perelli RM et al. 2019. Large-scale death of retinal astrocytes during normal development is non-apoptotic and implemented by microglia. PLOS Biol. 17:e3000492
    [Google Scholar]
  132. Punzo C, Kornacker K, Cepko CL. 2009. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat. Neurosci. 12:44–52
    [Google Scholar]
  133. Ramamurthy S, Chang E, Cao Y, Zhu J, Ronnett GV. 2014. AMPK activation regulates neuronal structure in developing hippocampal neurons. Neuroscience 259:13–24
    [Google Scholar]
  134. Ramirez JM, Ramirez AI, Salazar JJ, de Hoz R, Trivino A. 2001. Changes of astrocytes in retinal ageing and age-related macular degeneration. Exp. Eye Res. 73:601–15
    [Google Scholar]
  135. Rashid K, Akhtar-Schaefer I, Langmann T. 2019. Microglia in retinal degeneration. Front. Immunol. 10:1975
    [Google Scholar]
  136. Rattner A, Williams J, Nathans J. 2019. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J. Clin. Investig. 129:3807–20
    [Google Scholar]
  137. Reichenbach A, Wohlrab F. 1983. Quantitative properties of Muller cells in rabbit retina as revealed by histochemical demonstration of NADH-diaphorase activity. Graefes Arch. Clin. Exp. Ophthalmol. 220:81–83
    [Google Scholar]
  138. Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ et al. 2007. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5:151–56
    [Google Scholar]
  139. Riessland M, Kolisnyk B, Kim TW, Cheng J, Ni J et al. 2019. Loss of SATB1 induces p21-dependent cellular senescence in post-mitotic dopaminergic neurons. Cell Stem Cell 25:514–30.e8
    [Google Scholar]
  140. Rueda EM, Hall BM, Hill MC, Swinton PG, Tong X et al. 2019. The hippo pathway blocks mammalian retinal Muller glial cell reprogramming. Cell Rep. 27:1637–49.e6
    [Google Scholar]
  141. Salter MW, Stevens B. 2017. Microglia emerge as central players in brain disease. Nat. Med. 23:1018–27
    [Google Scholar]
  142. Samuel MA, Voinescu PE, Lilley BN, de Cabo R, Foretz M et al. 2014. LKB1 and AMPK regulate synaptic remodeling in old age. Nat. Neurosci. 17:1190–97
    [Google Scholar]
  143. Samuel MA, Zhang Y, Meister M, Sanes JR. 2011. Age-related alterations in neurons of the mouse retina. J. Neurosci. 31:16033–44
    [Google Scholar]
  144. Sanes JR, Zipursky SL. 2010. Design principles of insect and vertebrate visual systems. Neuron 66:15–36
    [Google Scholar]
  145. Sanuki R, Watanabe S, Sugita Y, Irie S, Kozuka T et al. 2015. Protein-4.1G-mediated membrane trafficking is essential for correct rod synaptic location in the retina and for normal visual function. Cell Rep. 10:796–808
    [Google Scholar]
  146. Sarna T, Burke JM, Korytowski W, Rozanowska M, Skumatz CM et al. 2003. Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp. Eye Res. 76:89–98
    [Google Scholar]
  147. Sato S, Omori Y, Katoh K, Kondo M, Kanagawa M et al. 2008. Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat. Neurosci. 11:923–31
    [Google Scholar]
  148. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705
    [Google Scholar]
  149. Schmidt TM, Alam NM, Chen S, Kofuji P, Li W et al. 2014. A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82:781–88
    [Google Scholar]
  150. Schwarzer P, Kokona D, Ebneter A, Zinkernagel MS. 2020. Effect of inhibition of colony-stimulating factor 1 receptor on choroidal neovascularization in mice. Am. J. Pathol. 190:412–25
    [Google Scholar]
  151. Selvam S, Kumar T, Fruttiger M. 2018. Retinal vasculature development in health and disease. Prog. Retin. Eye Res. 63:1–19
    [Google Scholar]
  152. Silhol M, Bonnichon V, Rage F, Tapia-Arancibia L. 2005. Age-related changes in brain-derived neurotrophic factor and tyrosine kinase receptor isoforms in the hippocampus and hypothalamus in male rats. Neuroscience 132:613–24
    [Google Scholar]
  153. Silverman SM, Wong WT. 2018. Microglia in the retina: roles in development, maturity, and disease. Annu. Rev. Vis. Sci. 4:45–77
    [Google Scholar]
  154. Singhal S, Lawrence JM, Bhatia B, Ellis JS, Kwan AS et al. 2008. Chondroitin sulfate proteoglycans and microglia prevent migration and integration of grafted Muller stem cells into degenerating retina. Stem Cells 26:1074–82
    [Google Scholar]
  155. Sondereker KB, Stabio ME, Renna JM. 2020. Crosstalk: The diversity of melanopsin ganglion cell types has begun to challenge the canonical divide between image-forming and non-image-forming vision. J. Comp. Neurol. 528:2044–67
    [Google Scholar]
  156. Sonntag S, Dedek K, Dorgau B, Schultz K, Schmidt KF et al. 2012. Ablation of retinal horizontal cells from adult mice leads to rod degeneration and remodeling in the outer retina. J. Neurosci. 32:10713–24
    [Google Scholar]
  157. Sparrow JR, Cai B. 2001. Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Investig. Ophthalmol. Vis. Sci. 42:1356–62
    [Google Scholar]
  158. Spear PD. 1993. Neural bases of visual deficits during aging. Vis. Res. 33:2589–609
    [Google Scholar]
  159. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78
    [Google Scholar]
  160. Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. 2018. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 21:1318–31
    [Google Scholar]
  161. Takada Y, Vijayasarathy C, Zeng Y, Kjellstrom S, Bush RA, Sieving PA. 2008. Synaptic pathology in retinoschisis knockout (Rs1−/y) mouse retina and modification by rAAV-Rs1 gene delivery. Investig. Ophthalmol. Vis. Sci. 49:3677–86
    [Google Scholar]
  162. Takeichi M. 2007. The cadherin superfamily in neuronal connections and interactions. Nat. Rev. Neurosci. 8:11–20
    [Google Scholar]
  163. Tao C, Zhang X. 2016. Retinal proteoglycans act as cellular receptors for basement membrane assembly to control astrocyte migration and angiogenesis. Cell Rep. 17:1832–44
    [Google Scholar]
  164. Taylor RW, Turnbull DM. 2005. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6:389–402
    [Google Scholar]
  165. Terzibasi E, Calamusa M, Novelli E, Domenici L, Strettoi E, Cellerino A. 2009. Age-dependent remodelling of retinal circuitry. Neurobiol. Aging 30:819–28
    [Google Scholar]
  166. tom Dieck S, Specht D, Strenzke N, Hida Y, Krishnamoorthy V et al. 2012. Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J. Neurosci. 32:12192–203
    [Google Scholar]
  167. Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I et al. 2019. Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104:1039–55.e12
    [Google Scholar]
  168. Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT et al. 2004. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–23
    [Google Scholar]
  169. Tworig JM, Feller MB. 2021. Muller glia in retinal development: from specification to circuit integration. Front. Neural Circuits 15:815923
    [Google Scholar]
  170. Ulgherait M, Rana A, Rera M, Graniel J, Walker DW. 2014. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep. 8:1767–80
    [Google Scholar]
  171. Usui Y, Westenskow PD, Kurihara T, Aguilar E, Sakimoto S et al. 2015. Neurovascular crosstalk between interneurons and capillaries is required for vision. J. Clin. Investig. 125:2335–46
    [Google Scholar]
  172. van Beek EM, Cochrane F, Barclay AN, van den Berg TK. 2005. Signal regulatory proteins in the immune system. J. Immunol. 175:7781–87
    [Google Scholar]
  173. Velte TJ, Masland RH. 1999. Action potentials in the dendrites of retinal ganglion cells. J. Neurophysiol. 81:1412–17
    [Google Scholar]
  174. Wang K, Peng B, Lin B. 2014. Fractalkine receptor regulates microglial neurotoxicity in an experimental mouse glaucoma model. Glia 62:1943–54
    [Google Scholar]
  175. Wang SK, Cepko CL. 2022. Targeting microglia to treat degenerative eye diseases. Front. Immunol. 13:843558
    [Google Scholar]
  176. Wang X, Zhao L, Zhang J, Fariss RN, Ma W et al. 2016. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J. Neurosci. 36:2827–42
    [Google Scholar]
  177. Wassle H, Puller C, Muller F, Haverkamp S. 2009. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J. Neurosci. 29:106–17
    [Google Scholar]
  178. Weale RA. 1975. Senile changes in visual acuity. Trans. Ophthalmol. Soc. U. K. 95:36–38
    [Google Scholar]
  179. Wei Y, Jiang H, Shi Y, Qu D, Gregori G et al. 2017. Age-related alterations in the retinal microvasculature, microcirculation, and microstructure. Investig. Ophthalmol. Vis. Sci. 58:3804–17
    [Google Scholar]
  180. Weiner GA, Shah SH, Angelopoulos CM, Bartakova AB, Pulido RS et al. 2019. Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation. Nat. Commun. 10:2477
    [Google Scholar]
  181. Weisse I. 1995. Changes in the aging rat retina. Ophthalmic Res. 27:1154–63
    [Google Scholar]
  182. Williams GA, Jacobs GH. 2007. Cone-based vision in the aging mouse. Vis. Res. 47:2037–46
    [Google Scholar]
  183. Williams SE, Mann F, Erskine L, Sakurai T, Wei S et al. 2003. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Neuron 39:919–35
    [Google Scholar]
  184. Wing GL, Blanchard GC, Weiter JJ. 1978. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 17:601–7
    [Google Scholar]
  185. Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ et al. 2018. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature 560:484–88
    [Google Scholar]
  186. Yoon BC, Jung H, Dwivedy A, O'Hare CM, Zivraj KH, Holt CE. 2012. Local translation of extranuclear lamin B promotes axon maintenance. Cell 148:752–64
    [Google Scholar]
  187. Yu C, Saban DR. 2019. Identification of a unique subretinal microglia type in retinal degeneration using single cell RNA-seq. Adv. Exp. Med. Biol. 1185:181–86
    [Google Scholar]
  188. Yuan L, Neufeld AH. 2001. Activated microglia in the human glaucomatous optic nerve head. J. Neurosci. Res. 64:523–32
    [Google Scholar]
  189. Zahn JM, Kim SK. 2007. Systems biology of aging in four species. Curr. Opin. Biotechnol. 18:355–59
    [Google Scholar]
  190. Zarbin MA. 2004. Current concepts in the pathogenesis of age-related macular degeneration. Arch. Ophthalmol. 122:598–614
    [Google Scholar]
  191. Zelina P, Avci HX, Thelen K, Pollerberg GE. 2005. The cell adhesion molecule NrCAM is crucial for growth cone behaviour and pathfinding of retinal ganglion cell axons. Development 132:3609–18
    [Google Scholar]
  192. Zeng HY, Green WR, Tso MO. 2008. Microglial activation in human diabetic retinopathy. Arch. Ophthalmol. 126:227–32
    [Google Scholar]
  193. Zhang M, Poplawski M, Yen K, Cheng H, Bloss E et al. 2009. Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling. PLOS Biol. 7:e1000245
    [Google Scholar]
/content/journals/10.1146/annurev-vision-112122-020950
Loading
/content/journals/10.1146/annurev-vision-112122-020950
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error