Skip to main content
Log in

Influence of Chemical Structure of Fluorinated Surfactants on the Air/Water Interface Properties

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The formation heats for a number of gemini fluorocarbon surfactants have been estimated using density functional theory (DFT), the values of air/water interface formation energies (IFE) have been compared. It is shown that the fluorocarbon surfactants can efficiently reduce the surface tension of the air/water interface. One of the representatives of the surfactants, possessing the highest IFE value (in absolute value), has been prepared and its critical micelle concentration and the corresponding surface tension have been experimentally determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. H. Lu, L. Guo, and M. Azimi, Comput. Ind., 111, 68-90 (2019).

    Article  Google Scholar 

  2. S. Longde, Z. Caineng, J. Ailin, et al., Pet. Explor. Dev., 46, No. 6, 1073-1087 (2019).

    Article  Google Scholar 

  3. L. Qun, X. U. Yun, C. Bo, et al., Pet. Explor. Dev., 49, No. 1, 191-199 (2022).

    Article  Google Scholar 

  4. X. Zheng, S. Junfeng, C. Gang, et al., Pet. Explor. Dev., 49, No. 3, 644-659 (2022).

    Article  Google Scholar 

  5. Y. Zhou, L. You, Y. Kang, et al., Geoenergy Sci. Eng., 211437 (2023).

  6. R. K. Saini, B. Crane, and N. R. Shimek, Can. J. Chem. Eng., 100, No. 6, 1309-1322 (2022).

    Article  CAS  Google Scholar 

  7. R. Zhou, Y. Jin, Y. Shen, et al., J. Disper. Sci. Technol., 42, No. 1, 152-159 (2020).

    Article  CAS  Google Scholar 

  8. S. M. S. Hussain, A. A. Adewunmi, A. Mahboob, et al., Adv. Colloid Interface Sci., 303, 102634 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. W. Chen, Pet. Sci, 8, No. 4, 477-484 (2011).

    Article  Google Scholar 

  10. W. Hu, Y. Wei, and J. Bao, Pet. Explor. Dev., 45, No. 4, 685-697 (2018).

    Article  Google Scholar 

  11. J. Salager, A. M. Forgiarini, and J. Bullon, J. Surfactants Deterg., 16, No. 4, 449-472 (2013).

    Article  CAS  Google Scholar 

  12. Y. Guo, J. Liu, X. Zhang, et al., Energy Fuels, 26, No. 4, 2116-2123 (2012).

    Article  CAS  Google Scholar 

  13. T. Yui, S. Fujii, K. Matsubara, et al., Langmuir, 29, No. 34, 10705-10712 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. C. Baudequin, Z. Mai, M. Rakib, et al., J. Membrane Sci., 458, 111-119 (2014).

    Article  CAS  Google Scholar 

  15. L. A. D. Agostino, and S. A. Mabury, Environ. Sci. Technol., 48, No. 1, 121-129 (2014).

    Article  PubMed  Google Scholar 

  16. C. Chang, and E. I. Franses, Colloids Surf. A, 100, 1-45 (1995).

    Article  CAS  Google Scholar 

  17. J. Eastoe, A. Paul, A. Downer, et al., Langmuir, 18, No. 8, 3014-3017 (2002).

    Article  CAS  Google Scholar 

  18. R. C. Buck, P. M. Murphy, and M. Pabon, Polyfluorinated Chemicals and Transformation Products, T. P. Knepper, F. T. Lange (eds.), Springer, Berlin, Heidelberg, 1-24 (2012).

  19. S. Paria, and K. C. Khilar, Adv. Colloid Interface Sci., 110, No. 3, 75-95 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. L. Zhang, Z. Liu, T. Ren, et al., Langmuir, 30, No. 46, 13815-13822 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. F. Neese, WIREs Comput. Mol. Sci., 2, No. 1, 73-78 (2012).

    Article  CAS  Google Scholar 

  22. F. Neese, WIREs Comput. Mol. Sci., 12, No. 5, e1606 (2022).

    Article  Google Scholar 

  23. J. G. Brandenburg, C. Bannwarth, A. Hansen, et al., J. Chem. Phys., 148, No. 6, 64104 (2018).

    Article  Google Scholar 

  24. X. Jing, Q. Luo, X. Cui, et al., J. Mol. Liq., 366, 120237 (2022).

    Article  CAS  Google Scholar 

  25. Y. Liu, Y. Ma, C. Yu, et al., Green Chem., 24, No. 15, 5779-5791 (2022).

    Article  CAS  Google Scholar 

  26. W. Yang, R. G. Parr, and C. Lee, Phys. Rev. B., 37, No. 2, 785-789 (1988).

    Article  Google Scholar 

  27. S. S. Jang, S. Lin, P. K. Maiti, et al., J. Phys. Chem. B, 108, No. 32, 12130-12140 (2004).

    Article  CAS  Google Scholar 

  28. M. J. Abraham, T. Murtola, R. Schulz, et al., Softwarex, 1-2, 19-25 (2015).

    Article  Google Scholar 

  29. G. A. Ozpinar, W. Peukert, and T. Clark, J. Mol. Model., 16, No. 9, 1427-1440 (2010).

    Article  PubMed  Google Scholar 

  30. A. Sengupta, Z. Li, L. F. Song, et al., J. Chem. Inf. Model, 61, No. 2, 869-880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Izadi, and A. V. Onufriev, J. Chem. Phys, 145, No. 7, 74501 (2016).

    Article  Google Scholar 

  32. C. I. Bayly, P. Cieplak, W. Cornell, et al., J. Phys. Chem., 97, No. 40, 10269-10280 (1993).

    Article  CAS  Google Scholar 

  33. T. Lu, and F. Chen, J. Comput. Chem., 33, No. 5, 580-592 (2012).

    Article  PubMed  Google Scholar 

  34. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys., 126, No. 1, 14101 (2007).

    Article  Google Scholar 

  35. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. Model., 14, No. 1, 33-38 (1996).

    Article  CAS  Google Scholar 

  36. C. L. Chen, Y. F. Liao, F. Lu, et al., J. Mol. Liq., 302, 112469 (2020).

    Article  CAS  Google Scholar 

  37. 37.Y. C. Shen, R. Jin, S. Q. Lai, et al., J. Mol. Liq., 296, 11185 (2019).

    Article  Google Scholar 

  38. H. Lu, M. Xue, B. Wang, et al. Soft Matter, 11 , No. 47, 9135-9143 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Z. F. Xie and Y. J. Feng J. Surfactants Deterg., 13, No. 1, 51-57 (2010).

  40. B. Wang, L. Liu, C Zheng, et al. J. Disper. Sci. Technol., 39, No. 4, 539-547 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PetroChina Southwest Oil & Gasfield Company and Southwest Petroleum University for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Xu.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 1, pp. 60-66, January-February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Jing, X., Zhou, L. et al. Influence of Chemical Structure of Fluorinated Surfactants on the Air/Water Interface Properties. Theor Exp Chem 59, 66–74 (2023). https://doi.org/10.1007/s11237-023-09767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09767-4

Keywords

Navigation