Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 18, 2023

Twinned single crystal structure of Li4P2S6

  • Hamdi Ben Yahia ORCID logo EMAIL logo , Kota Motohashi , Shigeo Mori , Atsushi Sakuda and Akitoshi Hayashi ORCID logo EMAIL logo

Abstract

Yellow needles-like single crystals of Li4P2S6 were obtained serendipitously during the preparation of Li7P3S10O. The twinned crystal structure of Li4P2S6 was determined from single-crystal X-ray diffraction data [wR(F2) = 0.069, 716 reflections, 40 variables]. Li4P2S6 crystallizes in the trigonal system, space group P 3 m 1 (N° 164), a = 10.5042(8) Å, c = 6.5837(6) Å, V = 629.11(9) Å3 and Z = 2. The lithium octahedra form a [Li4S6]8− honeycomb-like structure within which diphosphate units are located. The comparison of our crystal structure to those of P63/mcm-, P 3 1 m -, and P321-Li4P2S6 demonstrated group-subgroup relationships and associated the disorder or order of the phosphorus atoms within the identical [Li4S6]8− 3d-frameworks to the choice of the unit cell (the subcell with a ∼ 6.07 Å vs. the supercell with a ∼ 10.5 Å).


Corresponding authors: Hamdi Ben Yahia and Akitoshi Hayashi, Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan, E-mail: ,

Funding source: JSPS KAKENHI

Award Identifier / Grant number: 19H05816

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by JSPS KAKENHI (Grant Numbers 19H05816).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Al-Thyabat, S., Nakamura, T., Shibata, E., Iizuka, A. Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: critical review. Miner. Eng. 2013, 45, 4–17. https://doi.org/10.1016/j.mineng.2012.12.005.Search in Google Scholar

2. Ouyang, D., Chen, M., Huang, Q., Weng, J., Wang, Z., Wang, J. A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures. Appl. Sci. 2019, 9, 2483. https://doi.org/10.3390/app9122483.Search in Google Scholar

3. Du, X., Yang, B., Lu, Y., Guo, X., Zu, G., Huang, J. Detection of electrolyte leakage from lithium-ion batteries using a miniaturized sensor based on functionalized double-walled carbon nanotubes. J. Mater. Chem. C Mater. 2021, 9, 6760–6765. https://doi.org/10.1039/D1TC01069G.Search in Google Scholar

4. Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C. Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 2012, 208, 210–224. https://doi.org/10.1016/j.jpowsour.2012.02.038.Search in Google Scholar

5. Tolganbek, N., Serikkazyyeva, A., Kalybekkyzy, S., Sarsembina, M., Kanamura, K., Bakenov, Z., Mentbayeva, A. Interface modification of NASICON-type Li-ion conducting ceramic electrolytes: a critical evaluation. Mater. Adv. 2022, 3, 3055–3069. https://doi.org/10.1039/D1MA01239H.Search in Google Scholar

6. Yan, S., Yim, C.-H., Pankov, V., Bauer, M., Baranova, E., Weck, A., Merati, A., Abu-Lebdeh, Y. Perovskite solid-state electrolytes for lithium metal batteries. Batteries 2021, 7, 75. https://doi.org/10.3390/batteries7040075.Search in Google Scholar

7. Sun, H., Kang, S., Cui, L. Prospects of LLZO type solid electrolyte: from material design to battery application. Chem. Eng. J. 2023, 454, 140375. https://doi.org/10.1016/j.cej.2022.140375.Search in Google Scholar

8. Okumura, T., Taminato, S., Miyazaki, Y., Kitamura, M., Saito, T., Takeuchi, T., Kobayashi, H. LISICON-based amorphous oxide for bulk-type all-solid-state lithium-ion battery. ACS Appl. Energy Mater. 2020, 3, 3220–3229. https://doi.org/10.1021/acsaem.9b01949.Search in Google Scholar

9. Li, X., Liang, J., Chen, N., Luo, J., Adair, K. R., Wang, C., Banis, M. N., Sham, T., Zhang, L., Zhao, S., Lu, S., Huang, H., Li, R., Sun, X. Water‐mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. 2019, 131, 16579–16584. https://doi.org/10.1002/ange.201909805.Search in Google Scholar

10. Asano, T., Sakai, A., Ouchi, S., Sakaida, M., Miyazaki, A., Hasegawa, S. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 2018, 30, 1803075. https://doi.org/10.1002/adma.201803075.Search in Google Scholar PubMed

11. Kanno, R., Murayama, M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J. Electrochem. Soc. 2001, 148, A742. https://doi.org/10.1149/1.1379028.Search in Google Scholar

12. Sun, Y., Suzuki, K., Hori, S., Hirayama, M., Kanno, R. Superionic conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type structure in the Li3PS4–Li4SnS4–Li4SiS4 quasi-ternary system. Chem. Mater. 2017, 29, 5858–5864. https://doi.org/10.1021/acs.chemmater.7b00886.Search in Google Scholar

13. Seino, Y., Ota, T., Takada, K., Hayashi, A., Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7, 627–631. https://doi.org/10.1039/C3EE41655K.Search in Google Scholar

14. Kong, S. T., Gün, Ö., Koch, B., Deiseroth, H. J., Eckert, H., Reiner, C. Structural characterisation of the Li argyrodites Li7PS6 and Li7PSe6 and their solid solutions: quantification of site preferences by MAS-NMR spectroscopy. Chem. Eur. J. 2010, 16, 5138–5147. https://doi.org/10.1002/chem.200903023.Search in Google Scholar PubMed

15. Homma, K., Yonemura, M., Kobayashi, T., Nagao, M., Hirayama, M., Kanno, R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 2011, 182, 53–58. https://doi.org/10.1016/j.ssi.2010.10.001.Search in Google Scholar

16. Mercier, R., Malugani, J.-P., Fahys, B., Robert, G., Douglade, J. Structure du tetrathiophosphate de lithium. Acta Crystallogr. B. 1982, 38, 1887–1890. https://doi.org/10.1107/S0567740882007535.Search in Google Scholar

17. Yamane, H., Shibata, M., Shimane, Y., Junke, T., Seino, Y., Adams, S., Minami, K., Hayashi, A., Tatsumisago, M. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007, 178, 1163–1167. https://doi.org/10.1016/j.ssi.2007.05.020.Search in Google Scholar

18. Dietrich, C., Weber, D. A., Culver, S., Senyshyn, A., Sedlmaier, S. J., Indris, S., Janek, J., Zeier, W. G. Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6. Inorg. Chem. 2017, 56, 6681–6687. https://doi.org/10.1021/acs.inorgchem.7b00751.Search in Google Scholar PubMed

19. Mercier, R., Malugani, J. P., Fahys, B., Douglande, J., Robert, G. Synthese, structure cristalline et analyse vibrationnelle de l’hexathiohypodiphosphate de lithium Li4P2S6. J. Solid State Chem. 1982, 43, 151–162. https://doi.org/10.1016/0022-4596(82)90224-9.Search in Google Scholar

20. Hood, Z. D., Kates, C., Kirkham, M., Adhikari, S., Liang, C., Holzwarth, N. A. W. Structural and electrolyte properties of Li4P2S6. Solid State Ionics 2016, 284, 61–70. https://doi.org/10.1016/j.ssi.2015.10.015.Search in Google Scholar

21. Dietrich, C., Sadowski, M., Sicolo, S., Weber, D. A., Sedlmaier, S. J., Weldert, K. S., Indris, S., Albe, K., Janek, J., Zeier, W. G. Local structural investigations, defect formation, and ionic conductivity of the lithium ionic conductor Li4P2S6. Chem. Mater. 2016, 28, 8764–8773. https://doi.org/10.1021/acs.chemmater.6b04175.Search in Google Scholar

22. Neuberger, S., Culver, S. P., Eckert, H., Zeier, W. G. Schmedt auf der Günne, J. Refinement of the crystal structure of Li4P2S6 using NMR crystallography. Dalton Trans. 2018, 47, 11691–11695. https://doi.org/10.1039/C8DT02619.Search in Google Scholar

23. Schmedt auf der Günne, J., Eckert, H. High-resolution double-quantum 31P NMR: a new approach to structural studies of thiophosphates. Chem. Eur. J. 1998, 4, 1762–1767. https://doi.org/10.1002/(SICI)1521-3765(19980904)4:9<1762::AID-CHEM1762>3.0.CO;2-I.10.1002/(SICI)1521-3765(19980904)4:9<1762::AID-CHEM1762>3.0.CO;2-ISearch in Google Scholar

24. Eckert, H., Zhang, Z., Kennedy, J. H. Structural transformation of non-oxide chalcogenide glasses. The short-range order of lithium sulfide (Li2S)-phosphorus pentasulfide (P2S5) glasses studied by quantitative phosphorus-31, lithium-6, and lithium-7 high-resolution solid-state NMR. Chem. Mater. 1990, 2, 273–279. https://doi.org/10.1021/cm00009a017.Search in Google Scholar

25. Nagata, H., Akimoto, J. Ionic conductivity of low‐crystalline Li4P2S6 and Li4P2S6–LiX (X=Cl, Br, and I) systems and their role in improved positive electrode performance in all‐solid‐state LiS battery. ChemistrySelect 2020, 5, 9926–9931. https://doi.org/10.1002/slct.202002308.Search in Google Scholar

26. Sadowski, M., Sicolo, S., Albe, K. Defect thermodynamics and interfacial instability of crystalline Li4P2S6. Solid State Ionics 2018, 319, 53–60. https://doi.org/10.1016/j.ssi.2018.01.047.Search in Google Scholar

27. Li, Y., Hood, Z. D., Holzwarth, N. A. W. Computational and experimental (re)investigation of the structural and electrolyte properties of Li4P2S6, Na4P2S6, and Li2Na2P2S6. Phys. Rev. Mater. 2020, 4, 045406. https://doi.org/10.1103/PhysRevMaterials.4.045406.Search in Google Scholar

28. Stamminger, A. R., Ziebarth, B., Mrovec, M., Hammerschmidt, T., Drautz, R. Fast diffusion mechanism in Li4P2S6 via a concerted process of interstitial Li ions. RSC Adv. 2020, 10, 10715–10722. https://doi.org/10.1039/D0RA00932F.Search in Google Scholar

29. Chen, H., Hong, T., Jing, Y. The mechanical, vibrational and thermodynamic properties of glass-ceramic lithium thiophosphates Li4P2S6. J. Alloys Compd. 2020, 819, 152950. https://doi.org/10.1016/j.jallcom.2019.152950.Search in Google Scholar

30. Müller, U. Relating crystal structures by group–subgroup relations. Presented at the December 15. 2011. https://doi.org/10.1107/97809553602060000795.Search in Google Scholar

31. Müller, U. Kristallographische Gruppe-Untergruppe-Beziehungen und ihre Anwendung in der Kristallchemie. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537. https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

32. Barnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. MATCH, Commun. Math. Chem. 1980, 9, 139–175.Search in Google Scholar

33. Petříček, V., Dušek, M., Palatinus, L. Crystallographic computing system Jana2006: general features. Z. Kristallogr. 2014, 229, 345–352. https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

34. CrysAlisPro Agilent technologies. Version 1.171.36.28.Search in Google Scholar

35. Prince, E., Ed. International Tables for Crystallography; International Union of Crystallography: Chester, England, 2006.10.1107/97809553602060000103Search in Google Scholar

36. Palatinus, L., Chapuis, G. Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. https://doi.org/10.1107/S0021889807029238.Search in Google Scholar

37. Stokes, H. T., Hatch, D. M. FINDSYM: program for identifying the space-group symmetry of a crystal. J. Appl. Crystallogr. 2005, 38, 237–238. https://doi.org/10.1107/S0021889804031528.Search in Google Scholar

38. Spek, A. L. PLATON-a Multipurpose Crystallographic Tool; Utrecht University: Utrecht, the Netherlands, 2002.Search in Google Scholar

39. Le Page, Y. Computer derivation of the symmetry elements implied in a structure description. J. Appl. Crystallogr. 1987, 20, 264–269.10.1107/S0021889887086710Search in Google Scholar

40. Brown, I. D., Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B. 1985, 41, 244–247. https://doi.org/10.1107/S0108768185002063.Search in Google Scholar

41. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A. 1976, 32, 751–767. https://doi.org/10.1107/S0567739476001551.Search in Google Scholar

42. De la Flor, G., Orobengoa, D., Tasci, E., Perez-Mato, J. M., Aroyo, M. I. Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016, 49, 653–664. https://doi.org/10.1107/S1600576716002569.Search in Google Scholar

43. Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918–921. https://doi.org/10.1002/adma.200401286.Search in Google Scholar

44. Gaudin, E., Ben Yahia, H., Zúñiga, F. J., Pérez-Mato, J. M., Darriet, J. Modulated and disordered phases in the system LiCdVO4−LiCd4(VO4)3. Chem. Mater. 2005, 17, 2436–2447. https://doi.org/10.1021/cm050104e.Search in Google Scholar

45. Gaudin, E., Ben Yahia, H., Shikano, M., Amara, M. B., zur Loye, H.-C., Darriet, J. Incommensurate crystal structure of LiCd4(VO4)3. Z. Kristallogr. 2004, 219, 755–762. https://doi.org/10.1524/zkri.219.11.755.52432.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0013).


Received: 2023-03-16
Accepted: 2023-04-28
Published Online: 2023-05-18
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0013/html
Scroll to top button