Skip to main content
Log in

Capturing downstream wake of a marine current turbine by URANS and SST-IDDES

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Unsteady Reynolds-Averaged Navier–Stokes (URANS) and SST-based improved delayed detached eddy simulation (SST-IDDES) are used to compare the performance, flow field characteristics, and downstream turbine installation distance of a Marine Current Turbine (MCT). The flow domain is discretized with unstructured tetrahedral mesh using the Fluent 2020R1 meshing tool, sliding mesh method used for turbine rotation. The governing equation’s convergence conditions are set to 10–5. Second-order backward Euler and central differencing schemes are utilized for temporal and spatial discretization. It is found that power and torque coefficients predicted by both models match well with the available experimental data. The URANS model predicts relatively lesser transient properties than the IDDES model due to its isotropic character. Because of its anisotropic nature, the SST-based IDDES model predicts higher turbulence intensity. For both models, the tip vortex diffused near wake (3D) region, whereas the hub vortex diffused at 18D in URANS and 16.5D in SST-IDDES, supporting the assessment of downstream turbine installation distance. The percentage difference of power coefficient for both models is 2%, and the thrust coefficient is 1% at the optimum TSR (= 3.8). It is demonstrated that the SST-IDDES model is regarded as a reliable model to analyze the wake characteristics of marine current turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [Abdus Samad], and First Author Murali Kunasekaran [maero849@gmail.com] upon reasonable request.

Abbreviations

ADM:

Actuator disc model

DES:

Detached eddy simulation

GCI:

Grid convergence index

IDDES:

Improved delayed detached eddy simulation

LES:

Large-eddy simulation

MCT:

Marine current turbine

MRF:

Moving reference frame

NACA:

National advisory committee for aeronautics

PS:

Pressure surface

RSM:

Reynolds stress model

SIMPLE:

Semi-implicit method for pressure linked equations

SST:

Shear stress transport

SS:

Suction surface

TSR:

Tip speed ratio

TKE:

Turbulent kinetic energy

URANS:

Unsteady Reynolds average Navier–Stokes

\(A\) :

Turbine swept area (m)

\({C}_{P}\) :

Power coefficient

\({C}_{T}\) :

Thrust coefficient

\(D\) :

Diameter (m)

\({f}_{d}{,f}_{e}\) :

Blending functions

g :

Grid refinement factor

\(I\) :

Turbulence intensity

\(k\) :

Turbulent kinetic energy \(\left({\mathrm{m}}^{2}/{\mathrm{s}}^{2}\right)\)

\({l}_{0}\) :

Integral length scale

N :

Number of grids

\(P\) :

Power (W)

Q :

Torque (N-m)

\(R\) :

Turbine radius (m)

S :

Strain rate

\({S}_{ij}\) :

Rate of strain tensor

T :

Thrust (N)

\(U\) :

Velocity (\(\mathrm{m}/\mathrm{s}\))

\({U}_{\infty }\) :

Free stream velocity (\(\mathrm{m}/\mathrm{s}\))

\({U}^{*}\) :

Velocity deficit

\({U}_{w}\) :

Wake velocity (\(\mathrm{m}/\mathrm{s}\))

x:

Flow field distance (m)

\(y\) :

Radial distance (m)

\(\alpha\) :

Cant angle

\(\rho\) :

Fluid density (\(\mathrm{kg}/{\mathrm{m}}^{3})\)

\(\Omega\) :

Rotational speed (RPM)

\({\Omega }_{ij}\) :

Vorticity tensor

\(\lambda\) :

Tip speed ratio

\({\mu }_{t}\) :

Eddy viscosity

\(\nu\) :

Kinematic viscosity (\({\mathrm{m}}^{2}/\mathrm{s}\))

ϕ :

Performance parameter

\(\lambda\) :

Tip speed ratio

\(\tau\) :

Viscus stress (\(\mathrm{N}/{\mathrm{m}}^{2}\))

i, j:

Ith, jth components of Cartesian coordinates

References

  1. Sherry M, Nemes A, Lo Jacono D, Blackburn HM, Sheridan J (2013) The interaction of helical tip and root vortices in a wind turbine wake. Phys Fluids 25:1–16. https://doi.org/10.1063/1.4824734

    Article  Google Scholar 

  2. Vermeer LJ, Sørensen JN, Crespo A (2003) Wind turbine wake aerodynamics. Prog Aerosp Sci 39:467–510. https://doi.org/10.1016/S0376-0421(03)00078-2

    Article  Google Scholar 

  3. Myers LE, Bahaj AS (2010) Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Eng 37:218–227. https://doi.org/10.1016/j.oceaneng.2009.11.004

    Article  Google Scholar 

  4. Batten WMJ, Harrison ME, Bahaj AS (2013) Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines. Philos Trans R Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2012.0293

    Article  Google Scholar 

  5. Harrison ME, Batten WMJ, Myers LE, Bahaj AS (2010) Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew Power Gener 4:613–627. https://doi.org/10.1049/iet-rpg.2009.0193

    Article  Google Scholar 

  6. Nguyen VT, Guillou SS, Thiébot J, Santa CA (2016) Modelling turbulence with an actuator disk representing a tidal turbine. Renew Energy 97:625–635. https://doi.org/10.1016/j.renene.2016.06.014

    Article  Google Scholar 

  7. Tedds SC, Owen I, Poole RJ (2014) Near-wake characteristics of a model horizontal axis tidal stream turbine. Renew Energy 63:222–235. https://doi.org/10.1016/j.renene.2013.09.011

    Article  Google Scholar 

  8. Stallard T, Feng T, Stansby PK (2015) Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow. J Fluids Struct 54:235–246. https://doi.org/10.1016/j.jfluidstructs.2014.10.017

    Article  Google Scholar 

  9. Afgan I, McNaughton J, Rolfo S, Apsley DD, Stallard T, Stansby P (2013) Turbulent flow and loading on a tidal stream turbine by LES and RANS. Int J Heat Fluid Flow 43:96–108. https://doi.org/10.1016/j.ijheatfluidflow.2013.03.010

    Article  MATH  Google Scholar 

  10. Ahmed U, Apsley DD, Afgan I, Stallard T, Stansby PK (2017) Fluctuating loads on a tidal turbine due to velocity shear and turbulence: comparison of CFD with field data. Renew Energy 112:235–246. https://doi.org/10.1016/j.renene.2017.05.048

    Article  Google Scholar 

  11. Parkinson SG, Collier WJ (2016) Model validation of hydrodynamic loads and performance of a full-scale tidal turbine using Tidal Bladed. Int J Mar Energy 16:279–297. https://doi.org/10.1016/j.ijome.2016.08.001

    Article  Google Scholar 

  12. Pope SB (2000) Turbulent flows. Cambridge University Press. https://doi.org/10.1017/CBO9780511840531

    Book  MATH  Google Scholar 

  13. Johansen J, Sørensen NN, Michelsen JA, Schreck S (2002) Detached-Eddy simulation of flow around the NREL phase-VI blade. ASME Wind Energy Symp Wind 197:106–114. https://doi.org/10.1002/we.63

    Article  Google Scholar 

  14. Ebdon T, O’Doherty D, O’Doherty T, Mason-Jones A (2016) Simulating Marine Current Turbine Wakes Using Advanced Turbulence Models. In: Proc 3rd Asian Wave Tidal Energy Conf

  15. Spalart P, W-H Jou,Michael Strelets SA (1997) Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: 1st internatonal Conf. Adv. DNS/LES, Ruston, LA: Greyden Press, Columbus OH p. 137–47

  16. Spalart PR, Deck S, Shur ML, Squires KD, Strelets MK, Travin A (2006) A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor Comput Fluid Dyn 20:181–195. https://doi.org/10.1007/s00162-006-0015-0

    Article  MATH  Google Scholar 

  17. Menter FR, Kuntz M (2004) Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. Springer

    Book  Google Scholar 

  18. Schütze J, Menter FR (2012) Development of DDES and IDDES formulations for the k- ω shear stress transport model. Flow Turbulence Combust. https://doi.org/10.1007/s10494-011-9378-4

    Article  MATH  Google Scholar 

  19. Ouro P, Ramírez L, Harrold M (2019) Analysis of array spacing on tidal stream turbine farm performance using large-eddy simulation. J Fluids Struct 91:102732. https://doi.org/10.1016/j.jfluidstructs.2019.102732

    Article  Google Scholar 

  20. Ashton N, West A, Lardeau S, Revell A (2016) Assessment of RANS and DES methods for realistic automotive models. Comput Fluids 128:1–15. https://doi.org/10.1016/j.compfluid.2016.01.008

    Article  Google Scholar 

  21. Krappel T, Kuhlmann H, Kirschner O, Ruprecht A, Riedelbauch S (2015) International journal of heat and fluid flow validation of an IDDES-type turbulence model and application to a Francis pump turbine flow simulation in comparison with experimental results. Int J Heat Fluid Flow 55:167–179. https://doi.org/10.1016/j.ijheatfluidflow.2015.07.019

    Article  Google Scholar 

  22. Lei H, Zhou D, Bao Y, Li Y, Han Z (2017) Three-dimensional improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine. Energy Convers Manag 133:235–248. https://doi.org/10.1016/j.enconman.2016.11.067

    Article  Google Scholar 

  23. Salunkhe S, El FO, Bhushan S, Thompson D, O’Doherty D, O’Doherty T et al (2019) Validation of tidal stream turbinewake predictions and analysis of wake recovery mechanism. J Mar Sci Eng. https://doi.org/10.3390/jmse7100362

    Article  Google Scholar 

  24. Ghasemian M, Nejat A (2015) Aerodynamic noise prediction of a horizontal axis wind turbine using improved delayed detached eddy simulation and acoustic analogy. Energy Convers Manag 99:210–220. https://doi.org/10.1016/j.enconman.2015.04.011

    Article  Google Scholar 

  25. Huang JB, Xiao ZX, Liu J, Fu S (2012) Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES. Sci China Physics, Mech Astron 55:260–271. https://doi.org/10.1007/s11433-011-4601-9

    Article  Google Scholar 

  26. Robertson E, Choudhury V, Bhushan S, Walters DK (2015) Validation of OpenFOAM numerical methods and turbulence models for incompressible bluff body flows. Comput Fluids 123:122–145. https://doi.org/10.1016/j.compfluid.2015.09.010

    Article  MathSciNet  MATH  Google Scholar 

  27. Hu S, Zhang C, Wang F (2018) IDDES simulation of flow separation on a 3-D NACA23012 airfoil with spanwise ridge ice, AIAA Aviation Forum, 2018 Atmospheric and Space Environments Conference, June 25-29, 2018, Atlanta, Georgia. https://doi.org/10.2514/6.2018-2862.

  28. Guilmineau E, Deng GB, Leroyer A, Queutey P, Visonneau M, Wackers J (2018) Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body. Comput Fluids 176:302–319. https://doi.org/10.1016/j.compfluid.2017.01.005

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang J, Minelli G, Dong T, He K, Gao G, Krajnović S (2020) An IDDES investigation of Jacobs bogie effects on the slipstream and wake flow of a high-speed train. J Wind Eng Ind Aerodyn. https://doi.org/10.1016/j.jweia.2020.104233

    Article  Google Scholar 

  30. Thé J, Yu H (2017) A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods. Energy 138:257–289. https://doi.org/10.1016/j.energy.2017.07.028

    Article  Google Scholar 

  31. Zhang Y, Deng S, Wang X (2019) RANS and DDES simulations of a horizontal-axis wind turbine under stalled flow condition using OpenFOAM. Energy 167:1155–1163. https://doi.org/10.1016/j.energy.2018.11.014

    Article  Google Scholar 

  32. Syawitri TP, Yao YF, Chandra B, Yao J (2021) Comparison study of URANS and hybrid RANS-LES models on predicting vertical axis wind turbine performance at low, medium and high tip speed ratio ranges. Renew Energy 168:247–269. https://doi.org/10.1016/j.renene.2020.12.045

    Article  Google Scholar 

  33. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605. https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  34. Versteeg HK, Malalasekera W (2007) An Introduction to Computational Fluid Dynamics. Pearson Education Limited

    Google Scholar 

  35. Tedds SC, Owen I, Poole RJ (2014) Near-wake characteristics of a model horizontal axis tidal stream turbine. Renew Energy. https://doi.org/10.1016/j.renene.2013.09.011

    Article  Google Scholar 

  36. Jingbo H, Zhixiang X, Jian LIU, Song FU (2012) Simulation of shock wave buffet and its suppression on an OAT15A supercritical airfoil by IDDES. Sci China Phys Mech Astron 55:260–271. https://doi.org/10.1007/s11433-011-4601-9

    Article  Google Scholar 

  37. Kunasekaran M, Hyung S, Venkatesan N, Samad A (2021) Design optimization of a marine current turbine having winglet on blade. Ocean Eng 239:109877. https://doi.org/10.1016/j.oceaneng.2021.109877

    Article  Google Scholar 

  38. ANSYS Inc. FLUENT Tutorial Guide. vol. 15317. Canonsburg, PA: 2020.

  39. Thandayutham K, Samad A (2020) Hydrostructural optimization of a marine current turbine through multi-fidelity numerical models. Arab J Sci Eng 45:935–952. https://doi.org/10.1007/s13369-019-04185-y

    Article  Google Scholar 

  40. Kumar PM, Samad A (2019) Introducing Gurney flap to Wells turbine blade and performance analysis with OpenFOAM. Ocean Eng 187:106212. https://doi.org/10.1016/j.oceaneng.2019.106212

    Article  Google Scholar 

  41. Thandayutham K, Avital EJ, Venkatesan N, Samad A (2019) Optimization of a horizontal axis marine current turbine via surrogate models. Ocean Syst Eng 9:111–133. https://doi.org/10.12989/ose.2019.9.2.111

    Article  Google Scholar 

  42. Zhang J, Guo Z, Han S, Krajnovic S, Sheridan J, Ga. G (2022) An IDDES study of the near-wake flow topology of a simplified heavy vehicle transportation Safety and Environment. Transport Safety Environ 4(2):015

    Article  Google Scholar 

  43. Nuernberg M, Tao L (2018) Three dimensional tidal turbine array simulations using open FOAM with dynamic mesh. Ocean Eng 147:629–646. https://doi.org/10.1016/j.oceaneng.2017.10.053

    Article  Google Scholar 

  44. Kumar PM, Seo J, Seok W, Rhee SH, Samad A (2019) Multi-fidelity optimization of blade thickness parameters for a horizontal axis tidal stream turbine. Renew Energy 135:277–287. https://doi.org/10.1016/j.renene.2018.12.023

    Article  Google Scholar 

  45. Roache PJ (1998) Verification of codes and calculations. AIAA J 36:696–702. https://doi.org/10.2514/2.457

    Article  Google Scholar 

  46. Mittal A, Sreenivas K, Taylor LK, Hereth L, Hilbert CB (2016) Blade-resolved simulations of a model wind turbine : effect of temporal convergence. Wind Energy 19:1761–1783

    Article  Google Scholar 

  47. Seo J, Lee SJ, Choi WS, Park ST, Rhee SH (2016) Experimental study on kinetic energy conversion of horizontal axis tidal stream turbine. Renew Energy 97:784–797. https://doi.org/10.1016/j.renene.2016.06.041

    Article  Google Scholar 

  48. Song M, Kim M-C, Do I-R, Rhee SH, Lee JH, Hyun B-S (2012) Numerical and experimental investigation on the performance of three newly designed 100 kW-class tidal current turbines. Int J Nav Archit Ocean Eng 4:241–255. https://doi.org/10.2478/IJNAOE-2013-0093

    Article  Google Scholar 

  49. Shur ML, Spalart PR, Kh M, Travin AK (2008) International Journal of Heat and Fluid Flow A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int J Heat Fluid Flow 29:406–417. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001

    Article  Google Scholar 

  50. Ho S, Hyuk S, Jang K, Lee J, Hur N (2010) A numerical study for the optimal arrangement of ocean current turbine generators in the ocean current power parks. Curr Appl Phys 10:S137–S141. https://doi.org/10.1016/j.cap.2009.11.018

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by India-Korea Joint Research program by the Department of Science and Technology, Government of India (INT/Korea/P-42), and Ministry of Science and ICT, Republic of Korea (2017K1A3A1A19071629). We thank Mr. Ananthanarayanan, project officer in the wave energy and fluids engineering lab contributing to mesh generation during CFD simulation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdus Samad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunasekaran, M., Paulraj, M.K., Rhee, S.H. et al. Capturing downstream wake of a marine current turbine by URANS and SST-IDDES. J Mar Sci Technol 28, 568–582 (2023). https://doi.org/10.1007/s00773-023-00941-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-023-00941-w

Keywords

Navigation