Skip to main content

Advertisement

Log in

Exploring the Potential of Bacteriophages on Earth and Beyond

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Bacteriophages are ubiquitous, from natural environments to human-made shelters. Their prevalence is governed mainly by their host bacteria, leading to their coevolution with bacterial populations. Phages can contribute to the exchange of genetic information in various microbial communities and have a significant impact on how such communities might impact the humans around them. Phages are specific to their host and therefore have been chosen as the ideal candidates for the design of therapeutics to combat pathogenic bacteria as an alternative to antibiotics. Certain properties of phages have found tremendous applications in the biotechnology and healthcare sector. Although phage research is at a nascent stage, especially with regard to the phage diversity in microbiomes and their impact on humans. Microbiome research is progressing rapidly with the advent of multi-omics technologies and pipelines, but more phage-oriented studies are needed to better understand their role in microbiomes. This review compiles previous phage-associated studies in diverse environments, techniques used, knowledge gaps that need to be addressed, and how this information translates to help develop and maintain built environments like the International Space Station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:

Similar content being viewed by others

Data availability

No new data was generated in the article. This summarizes the current status of phage research in natural and built environments.

References

  1. Edwards RA, Rohwer F (2005) Viral metagenomics. Nat Rev Microbiol 3:504–510. https://doi.org/10.1038/nrmicro1163

    Article  CAS  Google Scholar 

  2. (2011) Microbiology by numbers. Nat Rev Microbiol 9:628. https://doi.org/10.1038/nrmicro2644

  3. Naureen Z, Dautaj A, Anpilogov K et al (2020) Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed 91:1–13

    Google Scholar 

  4. Brüssow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. https://doi.org/10.1128/MMBR.68.3.560-602.2004

    Article  CAS  Google Scholar 

  5. Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114. https://doi.org/10.1128/MMBR.64.1.69-114.2000

    Article  CAS  Google Scholar 

  6. Lehti TA, Pajunen MI, Skog MS, Finne J (2017) Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun 8:1915. https://doi.org/10.1038/s41467-017-02057-3

    Article  CAS  Google Scholar 

  7. Bergh Ø, BØrsheim KY, Bratbak G, Heldal M, (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468. https://doi.org/10.1038/340467a0

    Article  CAS  Google Scholar 

  8. Crummett LT, Puxty RJ, Weihe C et al (2016) The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology 499:219–229. https://doi.org/10.1016/j.virol.2016.09.016

    Article  CAS  Google Scholar 

  9. Meeske AJ, Nakandakari-Higa S, Marraffini LA (2019) Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570:241–245. https://doi.org/10.1038/s41586-019-1257-5

    Article  CAS  Google Scholar 

  10. Schwartz DA, Lehmkuhl BK, Lennon JT (2022) Phage-encoded sigma factors alter bacterial dormancy. mphere. https://doi.org/10.1128/msphere.00297-22

    Article  Google Scholar 

  11. Clokie MRJ, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45. https://doi.org/10.4161/bact.1.1.14942

    Article  Google Scholar 

  12. Anderson RE, Brazelton WJ, Baross JA (2011) Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front Microbiol. https://doi.org/10.3389/fmicb.2011.00219

    Article  Google Scholar 

  13. Ogilvie LA, Bowler LD, Caplin J et al (2013) Genome signature-based dissection of human gut metagenomes to extract subliminal viral sequences. Nat Commun 4:2420. https://doi.org/10.1038/ncomms3420

    Article  CAS  Google Scholar 

  14. Kim M-S, Bae J-W (2016) Spatial disturbances in altered mucosal and luminal gut viromes of diet-induced obese mice. Environ Microbiol 18:1498–1510. https://doi.org/10.1111/1462-2920.13182

    Article  CAS  Google Scholar 

  15. Kiani AK, Anpilogov K, Dautaj A et al (2020) Bacteriophages in food supplements obtained from natural sources. Acta Biomed 91:2020025–2020025

    Google Scholar 

  16. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783. https://doi.org/10.2217/fmb.13.47

    Article  CAS  Google Scholar 

  17. Kinross JM, Darzi AW, Nicholson JK (2011) Gut microbiome-host interactions in health and disease. Genome Med 3:14. https://doi.org/10.1186/gm228

    Article  Google Scholar 

  18. Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24:212–218. https://doi.org/10.1016/j.tibtech.2006.03.003

    Article  CAS  Google Scholar 

  19. Maruthamuthu S, Nagendran T, Anandkumar B, et al (2011) Microbiologically influenced corrosion on rails. Curr Sci 100. https://currentscience.ac.in/Volumes/100/06/0870.pdf

  20. Vaishampayan A, Grohmann E (2019) Multi-resistant biofilm-forming pathogens on the International Space Station. J Biosci 44:125. https://doi.org/10.1007/s12038-019-9929-8

    Article  CAS  Google Scholar 

  21. Grams TR, Tobiason DM, Venkateswaran K, Henle AM (2018) The search for novel bacteriophages aboard the International Space Station leads to the identification of two Bacillus species. Proceedings of the Wisconsin Space Conference https://doi.org/10.17307/wsc.v1i1.223

  22. Mushegian AR (2020) Are there 10 31 virus particles on earth, or more, or fewer? J Bacteriol. https://doi.org/10.1128/JB.00052-20

    Article  Google Scholar 

  23. Hendrix RW, Smith MCM, Burns RN et al (1999) Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci 96:2192–2197. https://doi.org/10.1073/pnas.96.5.2192

    Article  CAS  Google Scholar 

  24. Wigington CH, Sonderegger D, Brussaard CPD et al (2016) Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol 1:15024. https://doi.org/10.1038/nmicrobiol.2015.24

    Article  CAS  Google Scholar 

  25. Duchaud E, Boussaha M, Loux V et al (2007) Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25:763–769. https://doi.org/10.1038/nbt1313

    Article  CAS  Google Scholar 

  26. Spencer R (1955) A marine bacteriophage. Nature 175:690–691. https://doi.org/10.1038/175690a0

    Article  CAS  Google Scholar 

  27. EBI ENA Phage Genomes. In: https://www.ebi.ac.uk/genomes/phage.html

  28. Perez Sepulveda B, Redgwell T, Rihtman B et al (2016) Marine phage genomics: the tip of the iceberg. FEMS Microbiol Lett. https://doi.org/10.1093/femsle/fnw158

    Article  Google Scholar 

  29. Clokie MRJ, Millard AD, Mehta JY, Mann NH (2006) Virus isolation studies suggest short-term variations in abundance in natural cyanophage populations of the Indian Ocean. J Mar Biol Assoc UK 86:499–505. https://doi.org/10.1017/S0025315406013403

    Article  CAS  Google Scholar 

  30. Jover LF, Effler TC, Buchan A et al (2014) The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol 12:519–528. https://doi.org/10.1038/nrmicro3289

    Article  CAS  Google Scholar 

  31. Bonnain C, Breitbart M, Buck KN (2016) The ferrojan horse hypothesis: iron-virus interactions in the ocean. Front Mar Sci. https://doi.org/10.3389/fmars.2016.00082

    Article  Google Scholar 

  32. Paul JH (2008) Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J 2:579–589. https://doi.org/10.1038/ismej.2008.35

    Article  CAS  Google Scholar 

  33. McDaniel LD, delaRosa M, Paul JH (2006) Temperate and lytic cyanophages from the Gulf of Mexico. J Mar Biol Assoc UK 86:517–527. https://doi.org/10.1017/S0025315406013427

    Article  Google Scholar 

  34. Lane GA, Dole M (1956) Fractionation of oxygen isotopes during respiration. Science (1979) 123:574–576. https://doi.org/10.1126/science.123.3197.574

    Article  CAS  Google Scholar 

  35. Geider RJ, la Roche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth Res 39:275–301. https://doi.org/10.1007/BF00014588

    Article  CAS  Google Scholar 

  36. Gao E-B, Huang Y, Ning D (2016) Metabolic genes within cyanophage genomes: implications for diversity and evolution. Genes (Basel) 7:80. https://doi.org/10.3390/genes7100080

    Article  CAS  Google Scholar 

  37. Bryan MJ, Burroughs NJ, Spence EM et al (2008) Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer. PLoS ONE. https://doi.org/10.1371/journal.pone.0002048

    Article  Google Scholar 

  38. Enav H, Mandel-Gutfreund Y, Béjà O (2014) Comparative metagenomic analyses reveal viral-induced shifts of host metabolism towards nucleotide biosynthesis. Microbiome 2:9. https://doi.org/10.1186/2049-2618-2-9

    Article  Google Scholar 

  39. Williamson SJ, Rusch DB, Yooseph S et al (2008) The sorcerer II global ocean sampling expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS ONE. https://doi.org/10.1371/journal.pone.0001456

    Article  Google Scholar 

  40. Millard AD, Zwirglmaier K, Downey MJ et al (2009) Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environ Microbiol 11:2370–2387. https://doi.org/10.1111/j.1462-2920.2009.01966.x

    Article  CAS  Google Scholar 

  41. Lacal J, García-Fontana C, Muñoz-Martínez F et al (2010) Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 12:2873–2884. https://doi.org/10.1111/j.1462-2920.2010.02325.x

    Article  CAS  Google Scholar 

  42. Hambly E, Tétart F, Desplats C et al (2001) A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci 98:11411–11416. https://doi.org/10.1073/pnas.191174498

    Article  CAS  Google Scholar 

  43. Holmfeldt K, Solonenko N, Shah M et al (2013) Twelve previously unknown phage genera are ubiquitous in global oceans. Proc Natl Acad Sci 110:12798–12803. https://doi.org/10.1073/pnas.1305956110

    Article  Google Scholar 

  44. Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289. https://doi.org/10.1128/AEM.69.1.285-289.2003

    Article  CAS  Google Scholar 

  45. Emerson JB, Roux S, Brum JR et al (2018) Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol 3:870–880. https://doi.org/10.1038/s41564-018-0190-y

    Article  CAS  Google Scholar 

  46. Trubl G, Bin JH, Roux S et al (2018) Soil viruses are underexplored players in ecosystem carbon processing. mSystems. https://doi.org/10.1128/mSystems.00076-18

    Article  Google Scholar 

  47. Kuzyakov Y, Mason-Jones K (2018) Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions. Soil Biol Biochem 127:305–317. https://doi.org/10.1016/j.soilbio.2018.09.032

    Article  CAS  Google Scholar 

  48. Braga LPP, Spor A, Kot W et al (2020) Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8:52. https://doi.org/10.1186/s40168-020-00822-z

    Article  CAS  Google Scholar 

  49. Wei X, Ge T, Wu C et al (2021) T4-like phages reveal the potential role of viruses in soil organic matter mineralization. Environ Sci Technol 55:6440–6448. https://doi.org/10.1021/acs.est.0c06014

    Article  CAS  Google Scholar 

  50. Kadnikov VV, Mardanov AV, Frank YA et al (2019) Genomes of three bacteriophages from the deep subsurface aquifer. Data Brief 22:488–491. https://doi.org/10.1016/j.dib.2018.12.045

    Article  Google Scholar 

  51. Wang S, Yu S, Zhao X et al (2022) Experimental evidence for the impact of phages on mineralization of soil-derived dissolved organic matter under different temperature regimes. Sci Total Env. https://doi.org/10.1016/j.scitotenv.2022.157517

    Article  Google Scholar 

  52. Gómez P, Bennie J, Gaston KJ, Buckling A (2015) The impact of resource availability on bacterial resistance to phages in soil. PLoS ONE. https://doi.org/10.1371/journal.pone.0123752

    Article  Google Scholar 

  53. Bhunchoth A, Phironrit N, Leksomboon C et al (2015) Isolation of Ralstonia solanacearum -infecting bacteriophages from tomato fields in Chiang Mai, Thailand, and their experimental use as biocontrol agents. J Appl Microbiol 118:1023–1033. https://doi.org/10.1111/jam.12763

    Article  CAS  Google Scholar 

  54. Elhalag K, Nasr-Eldin M, Hussien A, Ahmad A (2018) Potential use of soilborne lytic Podoviridae phage as a biocontrol agent against Ralstonia solanacearum. J Basic Microbiol 58:658–669. https://doi.org/10.1002/jobm.201800039

    Article  CAS  Google Scholar 

  55. Ye M, Sun M, Huang D et al (2019) A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environ Int 129:488–496. https://doi.org/10.1016/j.envint.2019.05.062

    Article  CAS  Google Scholar 

  56. Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8:51. https://doi.org/10.1186/s13073-016-0307-y

    Article  Google Scholar 

  57. Fruciano DE, Bourne S (2007) Phage as an antimicrobial agent: D’herelle’s heretical theories and their role in the decline of phage prophylaxis in the west. Can J Infect Dis Med Microbiol 18:976850. https://doi.org/10.1155/2007/976850

    Article  Google Scholar 

  58. Dalmasso M, Hill C, Ross RP (2014) Exploiting gut bacteriophages for human health. Trends Microbiol 22:399–405. https://doi.org/10.1016/j.tim.2014.02.010

    Article  CAS  Google Scholar 

  59. Lim ES, Zhou Y, Zhao G et al (2015) Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat Med 21:1228–1234. https://doi.org/10.1038/nm.3950

    Article  CAS  Google Scholar 

  60. Reyes A, Blanton LV, Cao S et al (2015) Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proceed Nat Acad Sci 112:11941–11946. https://doi.org/10.1073/pnas.1514285112

    Article  CAS  Google Scholar 

  61. Minot S, Sinha R, Chen J et al (2011) The human gut virome: Inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625. https://doi.org/10.1101/gr.122705.111

    Article  CAS  Google Scholar 

  62. Reyes A, Haynes M, Hanson N et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338. https://doi.org/10.1038/nature09199

    Article  CAS  Google Scholar 

  63. Stern A, Mick E, Tirosh I et al (2012) CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res 22:1985–1994. https://doi.org/10.1101/gr.138297.112

    Article  CAS  Google Scholar 

  64. Modi SR, Lee HH, Spina CS, Collins JJ (2013) Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499:219–222. https://doi.org/10.1038/nature12212

    Article  CAS  Google Scholar 

  65. Maura D, Galtier M, le Bouguénec C, Debarbieux L (2012) Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob Agents Chemother 56:6235–6242. https://doi.org/10.1128/AAC.00602-12

    Article  CAS  Google Scholar 

  66. Maura D, Debarbieux L (2012) On the interactions between virulent bacteriophages and bacteria in the gut. Bacteriophage. https://doi.org/10.4161/bact.23557

    Article  Google Scholar 

  67. Minot S, Bryson A, Chehoud C et al (2013) Rapid evolution of the human gut virome. Proc Natl Acad Sci 110:12450–12455. https://doi.org/10.1073/pnas.1300833110

    Article  Google Scholar 

  68. Townsend EM, Kelly L, Muscatt G et al (2021) The human gut phageome: origins and roles in the human gut microbiome. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2021.643214

    Article  Google Scholar 

  69. Norman JM, Handley SA, Baldridge MT et al (2015) Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–460. https://doi.org/10.1016/j.cell.2015.01.002

    Article  CAS  Google Scholar 

  70. de Paepe M, Leclerc M, Tinsley CR, Petit M-A (2014) Bacteriophages: an underestimated role in human and animal health? Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2014.00039

    Article  Google Scholar 

  71. Mills S, Shanahan F, Stanton C et al (2013) Movers and shakers. Gut Microbes 4:4–16. https://doi.org/10.4161/gmic.22371

    Article  Google Scholar 

  72. Lepage P, Colombet J, Marteau P et al (2008) Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57:424–425. https://doi.org/10.1136/gut.2007.134668

    Article  CAS  Google Scholar 

  73. Pérez-Brocal V, García-López R, Vázquez-Castellanos JF et al (2013) Study of the viral and microbial communities associated with Crohn’s disease: a metagenomic approach. Clin Transl Gastroenterol. https://doi.org/10.1038/ctg.2013.9

    Article  Google Scholar 

  74. Ott SJ, Waetzig GH, Rehman A et al (2017) Efficacy of sterile fecal filtrate transfer for treating patients with clostridium difficile infection. Gastroenterology 152:799-811.e7. https://doi.org/10.1053/j.gastro.2016.11.010

    Article  Google Scholar 

  75. Ewert DL, Paynter MJB (1980) Enumeration of bacteriophages and host bacteria in sewage and the activated-sludge treatment process. Appl Environ Microbiol 39:576–583. https://doi.org/10.1128/aem.39.3.576-583.1980

    Article  CAS  Google Scholar 

  76. Gunathilaka GU, Tahlan V, Mafiz AI et al (2017) Phages in urban wastewater have the potential to disseminate antibiotic resistance. Int J Antimicrob Agents 50:678–683. https://doi.org/10.1016/j.ijantimicag.2017.08.013

    Article  CAS  Google Scholar 

  77. Göller PC, Elsener T, Lorgé D et al (2021) Multi-species host range of staphylococcal phages isolated from wastewater. Nat Commun 12:6965. https://doi.org/10.1038/s41467-021-27037-6

    Article  CAS  Google Scholar 

  78. Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B et al (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836. https://doi.org/10.1038/nrmicro2235

    Article  CAS  Google Scholar 

  79. Shapiro OH, Kushmaro A, Brenner A (2010) Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J 4:327–336. https://doi.org/10.1038/ismej.2009.118

    Article  Google Scholar 

  80. Peimbert M, Alcaraz LD, Rodriguez de la Vega R (2022) Where environmental microbiome meets its host: subway and passenger microbiome relationships. Mol Ecol. https://doi.org/10.1111/mec.16440

    Article  Google Scholar 

  81. Afshinnekoo E, Meydan C, Chowdhury S et al (2015) Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst 1:72–87. https://doi.org/10.1016/j.cels.2015.01.001

    Article  CAS  Google Scholar 

  82. Prussin AJ, Marr LC (2015) Sources of airborne microorganisms in the built environment. Microbiome 3:78. https://doi.org/10.1186/s40168-015-0144-z

    Article  Google Scholar 

  83. Rosario K, Fierer N, Miller S et al (2018) Diversity of DNA and RNA viruses in indoor air as assessed via metagenomic sequencing. Environ Sci Technol 52:1014–1027. https://doi.org/10.1021/acs.est.7b04203

    Article  CAS  Google Scholar 

  84. Prussin AJ, Torres PJ, Shimashita J et al (2019) Seasonal dynamics of DNA and RNA viral bioaerosol communities in a daycare center. Microbiome 7:53. https://doi.org/10.1186/s40168-019-0672-z

    Article  Google Scholar 

  85. Chase J, Fouquier J, Zare M et al (2016) Geography and location are the primary drivers of office microbiome composition. mSystems. https://doi.org/10.1128/mSystems.00022-16

    Article  Google Scholar 

  86. Vuong C, Saenz HL, Götz F, Otto M (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182:1761–1764. https://doi.org/10.1086/317624

    Article  Google Scholar 

  87. Rooney BV, Crucian BE, Pierson DL et al (2019) Herpes virus reactivation in astronauts during spaceflight and its application on earth. Front Microbiol 10:16. https://doi.org/10.3389/FMICB.2019.00016/BIBTEX

    Article  Google Scholar 

  88. Checinska Sielaff A, Urbaniak C, Mohan GBM et al (2019) Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7:50. https://doi.org/10.1186/s40168-019-0666-x

    Article  Google Scholar 

  89. Greninger AL (2018) A decade of RNA virus metagenomics is (not) enough. Virus Res 244:218–229. https://doi.org/10.1016/j.virusres.2017.10.014

    Article  CAS  Google Scholar 

  90. Johansen J, Plichta DR, Nissen JN et al (2022) Genome binning of viral entities from bulk metagenomics data. Nat Commun 13:965. https://doi.org/10.1038/s41467-022-28581-5

    Article  CAS  Google Scholar 

  91. Yamamoto KR, Alberts BM, Benzinger R et al (1970) Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40:734–744. https://doi.org/10.1016/0042-6822(70)90218-7

    Article  CAS  Google Scholar 

  92. Beaulaurier J, Luo E, Eppley JM et al (2020) Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res 30:437–446. https://doi.org/10.1101/gr.251686.119

    Article  CAS  Google Scholar 

  93. Goldsmith DB, Crosti G, Dwivedi B et al (2011) Development of phoH as a novel signature gene for assessing marine phage diversity. Appl Environ Microbiol 77:7730–7739. https://doi.org/10.1128/AEM.05531-11

    Article  CAS  Google Scholar 

  94. Nayfach S, Camargo AP, Schulz F et al (2020) CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nature Biotechnol. https://doi.org/10.1038/s41587-020-00774-7

    Article  Google Scholar 

  95. Zhou Y, Liang Y, Lynch KH et al (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. https://doi.org/10.1093/nar/gkr485

    Article  CAS  Google Scholar 

  96. Arndt D, Grant JR, Marcu A et al (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. https://doi.org/10.1093/nar/gkw387

    Article  CAS  Google Scholar 

  97. Tithi SS, Aylward FO, Jensen RV, Zhang L (2018) FastViromeExplorer: a pipeline for virus and phage identification and abundance profiling in metagenomics data. PeerJ. https://doi.org/10.7717/peerj.4227

    Article  Google Scholar 

  98. Lima-Mendez G, van Helden J, Toussaint A, Leplae R (2008) Prophinder: a computational tool for prophage prediction in prokaryotic genomes. Bioinformatics 24:863–865. https://doi.org/10.1093/bioinformatics/btn043

    Article  CAS  Google Scholar 

  99. Titus Brown C, Irber L (2016) sourmash: a library for MinHash sketching of DNA. J Open Source Softw 1:27

    Article  Google Scholar 

  100. Kieft K, Zhou Z, Anantharaman K (2020) VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8:90. https://doi.org/10.1186/s40168-020-00867-0

    Article  CAS  Google Scholar 

  101. Fang Z, Tan J, Wu S et al (2019) PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. Gigascience. https://doi.org/10.1093/gigascience/giz066

    Article  Google Scholar 

  102. Ho SFS, Wheeler N, Millard AD, van Schaik W (2022) Gauge your phage: Benchmarking of bacteriophage identification tools in metagenomic sequencing data. bioRxiv. https://doi.org/10.1101/2021.04.12.438782

    Article  Google Scholar 

  103. Marquet M, Hölzer M, Pletz MW et al (2022) What the phage: a scalable workflow for the identification and analysis of phage sequences. Gigascience. https://doi.org/10.1093/gigascience/giac110

    Article  Google Scholar 

  104. Coclet C, Roux S (2021) Global overview and major challenges of host prediction methods for uncultivated phages. Curr Opin Virol 49:117–126. https://doi.org/10.1016/j.coviro.2021.05.003

    Article  CAS  Google Scholar 

  105. Breitbart M, Salamon P, Andresen B et al (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci 99:14250–14255. https://doi.org/10.1073/pnas.202488399

    Article  CAS  Google Scholar 

  106. Krishnamurthy SR, Wang D (2017) Origins and challenges of viral dark matter. Virus Res 239:136–142. https://doi.org/10.1016/j.virusres.2017.02.002

    Article  CAS  Google Scholar 

  107. Randle-Boggis RJ, Helgason T, Sapp M, Ashton PD (2016) Evaluating techniques for metagenome annotation using simulated sequence data. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiw095

    Article  Google Scholar 

  108. Laxminarayan R (2022) The overlooked pandemic of antimicrobial resistance. The Lancet 399:606–607. https://doi.org/10.1016/S0140-6736(22)00087-3

    Article  CAS  Google Scholar 

  109. Manyi-Loh C, Mamphweli S, Meyer E, Okoh A (2018) Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules. https://doi.org/10.3390/MOLECULES23040795

    Article  Google Scholar 

Download references

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). © 2023 All rights reserved. The review described in this manuscript was performed at the Indian Institute of Science, Bangalore and Jet Propulsion Laboratory, California Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasthuri Venkateswaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, A., Shaw, B., Pradeep, N. et al. Exploring the Potential of Bacteriophages on Earth and Beyond. J Indian Inst Sci 103, 711–720 (2023). https://doi.org/10.1007/s41745-023-00361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-023-00361-0

Keywords

Navigation