Skip to main content
Log in

One-Pot Hydrolysis-Hydrogenation of Potato Starch to Sorbitol Using Bifunctional Catalyst Ru/Сs3HSiW12O40

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The possibility of obtaining sorbitol from potato starch via one-pot hydrolysis-hydrogenation is demonstrated using bifunctional catalysts 0.3–3 wt % Ru/Cs3HSiW12O40 (Ru/Cs-HPA). It is found that a catalyst with 1 wt % Ru is the one most effective, since it has the optimum ratio of the concentrations of Brønsted and Lewis acid sites on the support’s surface and a large specific surface area. The kinetics of the reaction with 1% Ru/Cs-HPA is studied and the observed energy of activation of the hydrolysis-hydrogenation of starch to sorbitol is found to be 80 ± 8 kJ/mol. A kinetic model is proposed on the basis of experimental and published data. The model accurately describes the hydrolysis-hydrogenation of starch. The yield of sorbitol was 88 mol % (99 wt %) after 3 hours of the reaction using a catalyst with the optimum composition (1% Ru/Cs-HPA) at the optimum temperature (150°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Delgado-Arcaño, Y., Mandelli, D., Carvalho, W.A., and Pontes, L.A.M., Waste Biomass Valorization, 2021, vol. 12, no. 9, pp. 5109–5120. https://doi.org/10.1007/s12649-021-01348-7

    Article  CAS  Google Scholar 

  2. Mäki-Arvela, P., Holmbom, B., Salmi, T., and Mur-zin, D., Catal. Rev., 2007, vol. 49, no. 3, pp. 197–340. https://doi.org/10.1080/01614940701313127

    Article  CAS  Google Scholar 

  3. Deng, W., Wang, Y., Zhang, Q., and Wang, Y., Catal. Surv. Asia, 2012, vol. 16, no. 2, pp. 91–105. https://doi.org/10.1007/s10563-012-9136-1

    Article  CAS  Google Scholar 

  4. Fukuoka, A. and Dhepe, P.L., Angew. Chem., Int. Ed., 2006, vol. 45, no. 31, pp. 5161–5163. https://doi.org/10.1002/anie.200601921

    Article  CAS  Google Scholar 

  5. Fukuoka, A. and Dhepe, P.L., Chem. Rec., 2009, vol. 9, no. 4, pp. 224–235. https://doi.org/10.1002/tcr.200900004

    Article  CAS  PubMed  Google Scholar 

  6. Gromov, N.V., Medvedeva, T.B., Taran, O.P., Timofeeva, M.N., Said-Aizpuru, O., Panchenko, V.N., Gerasimov, E.Yu., Kozhevnikov, I.V., and Parmon, V.N., Appl. Catal., A, 2020, vol. 595, article no. 117489. https://doi.org/10.1016/j.apcata.2020.117489

  7. Gromov, N.V., Medvedeva, T.B., Rodikova, Yu.A., Timofeeva, M.N., Panchenko, V.N., Taran, O.P., Kozhevnikov, I.V., and Parmon, V.N., Bioresour. Technol., 2021, vol. 319, article no. 124122. https://doi.org/10.1016/j.biortech.2020.124122

    Article  CAS  PubMed  Google Scholar 

  8. Liu, M., Deng, W., Zhang, Q., Wang, Y., and Wang, Y., Chem. Commun., 2011, vol. 47, no. 34, pp. 9717–9719. https://doi.org/10.1039/c1cc12506k

    Article  CAS  Google Scholar 

  9. Xie, X., Han, J., Wang, H., Zhu, X., Liu, X., Niu, Y., Song, Z., and Ge, Q., Catal. Today, 2014, vol. 233, pp. 70–76. https://doi.org/10.1016/j.cattod.2013.09.061

    Article  CAS  Google Scholar 

  10. Colvin, D.J., in Cellulose and Cellulose Derivatives, Bikales, N.M., and Segal, L., Eds., New York: Wiley-Interscience, 1971.

    Google Scholar 

  11. US Patent 3963788A, 1976.

  12. US Patent 4694113, 1987.

  13. US Patent 2609398, 1952.

  14. Gromov, N.V., Medvedeva, T.B., Rodikova, Yu.A., Babushkin, D.E., Panchenko, V.N., Timofeeva, M.N., Zhizhina, E.G., Taran, O.P., and Parmon, V.N., RSC Adv., 2020, vol. 10, no. 48, pp. 28856–28864. https://doi.org/10.1039/d0ra05501h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gromov, N.V., Medvedeva, T.B., Taran, O.P., Timofeeva, M.N., and Parmon, V.N., Catal. Ind., 2021, vol. 13, no. 1, pp. 73–80. https://doi.org/10.1134/S2070050421010049

    Article  Google Scholar 

  16. Gromov, N.V., Medvedeva, T.B., Panchenko, V.N., Timofeeva, M.N., and Parmon, V.N., Catal. Ind., 2021, vol. 13, no. 1, pp. 81–89. https://doi.org/10.1134/S2070050421010050

    Article  Google Scholar 

  17. Ikonnikova, K.V., Ikonnikova, L.F., Minakova, T.S., and Yu.S. Sarkisov, Teoriya i praktika pH-metricheskogo opredeleniya kislotno-osnovnykh svoistv poverkhnosti tverdykh tel: uchebnoe posobie (Theory and Practice of the pH-Metric Determination of Solids Surface Acid-Base Properties: a Textbook), Tomsk: Tomsk. Politekhn. Univ., 2011.

  18. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotnom-osnovnom katalize (Infrared Spectroscopy in Acid-Base Catalysis), Novosibirsk: Nauka, 1992.

  19. Galletti, A.M., Antonetti, C., Fulignati, S., and Licursi, D., Catalysts, 2020, vol. 10, no. 10, article no. 1221. https://doi.org/10.3390/catal10101221

    Article  CAS  Google Scholar 

  20. Luzgin, M.V., Kazantsev, M.S., Volkova, G.G., Wang, W., and Stepanov, A.G., J. Catal., 2011, vol. 277, no. 1, pp. 72–79. https://doi.org/10.1016/j.jcat.2010.10.015

    Article  CAS  Google Scholar 

  21. Luzgin, M.V., Kazantsev, M.S., Volkova, G.G., and Stepanov, A.G., J. Catal., 2013, vol. 308, pp. 250–257. https://doi.org/10.1016/j.jcat.2013.08.024

    Article  CAS  Google Scholar 

  22. Kim, Y.T., Dumesic, J.A., and Huber, G.W., J. Catal., 2013, vol. 304, pp. 72–85. https://doi.org/10.1016/j.jcat.2013.03.022

    Article  CAS  Google Scholar 

  23. Deng, W., Wang, Y., Zhang, Q., and Wang, Y., Catal. Surv. Asia, 2012, vol. 16, no. 2, pp. 91–105. https://doi.org/10.1007/s10563-012-9136-1

    Article  CAS  Google Scholar 

  24. Negahdar, L., Kinetic investigation of the hydrolytic hydrogenation of oligosaccharides to sorbitol, PhD dissertation, Aachen, Germany: RWTH Aachen University, 2015.

  25. Komanoya, T., Kobayashi, H., Hara, K., and Chun, W., ChemCatChem, 2014, vol. 6, no. 1, pp. 230–236. https://doi.org/10.1002/cctc.201300731

    Article  CAS  Google Scholar 

  26. Negahdar, L., Oltmanns, J.U., Palkovits, S., and Palkovits, R., Appl. Catal., B, 2014, vol. 147, pp. 677–683. https://doi.org/10.1016/j.apcatb.2013.09.046

    Article  CAS  Google Scholar 

  27. Usheva, N.V., Moizes, O.E., Mityanina, O.E., and Kuz’menko, E.A., Matematicheskoe modelirovanie khimiko-tekhnologicheskikh protsessov: uchebnoe posobie (Mathematical Modeling of Chemical Engineering Processes: a Textbook), Tomsk: Tomsk. Politekhn. Univ., 2014. https://portal.tpu.ru/SHARED/u/USHEVA/Ucheba/Tab1/UP_MMHTP.pdf. Cited February 16, 2023.

Download references

Funding

The hydrolysis-hydrogenation of starch was financially supported by the Russian Foundation for Basic Research, project 20-03-00263. Mathematical modeling of the hydrolysis-hydrogenation of starch was supported by the Russian Foundation for Basic Research and the Government of Novosibirsk oblast, project 20-43-540018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Gromov, T. B. Medvedeva, V. N. Panchenko, O. P. Taran, M. N. Timofeeva or V. N. Parmon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gromov, N.V., Medvedeva, T.B., Panchenko, V.N. et al. One-Pot Hydrolysis-Hydrogenation of Potato Starch to Sorbitol Using Bifunctional Catalyst Ru/Сs3HSiW12O40. Catal. Ind. 15, 87–98 (2023). https://doi.org/10.1134/S207005042301004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207005042301004X

Keywords:

Navigation