Skip to main content
Log in

Aerobic Oxidative Cyclization of 2-Mercaptobenzamide to 1,2-Benzoisothiazolin-3-one in the Presence of Mn(OAc)2

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

One of a widely used broad-spectrum industrial bactericidal and mildew prevention agents is 1,2-benzoisothiazolin-3-one (BIT). In present study, it was demonstrated that aerobic oxidative cyclization of 2‑mercaptobenzamide (MBA) and 2,2'-disulfanediyldibenzamide (DSBA) in the presence of Mn(OAc)2 as catalyst allowed to obtain BIT. The mechanism reaction was suggested. It was found that DSBA and MBA can be converted to the BITwith 99% yield at 1.0 mol % Mn(OAc)2 under 0.3 MPa of oxygen and 100°C for 8 h. Experimental data point that this protocol is both economical and environmentally friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Fu, Y., Kok, R.A.W., Dankbaar, B., Ligthart, P.E.M., and van Riel, A.C.R., J. Cleaner Prod., 2018, vol. 205, pp. 226–251. https://doi.org/10.1016/j.jclepro.2018.08.268

    Article  Google Scholar 

  2. Taniewski, M., Chem. Eng. Technol., 2006, vol. 29, no. 12, pp. 1397–1403. https://doi.org/10.1002/ceat.200600178

    Article  CAS  Google Scholar 

  3. Li, Z., Pan, Y., Zhong, W., Zhu, Y., Zhao, Y., Li, L., Liu, W., Zhou, H., and Yang, C., Bioorg. Med. Chem., 2014, vol. 22, no. 24, pp. 6735–6745. https://doi.org/10.1016/j.bmc.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  4. Guo, Z., Yan, Z., Zhou, X., Wang, Q., Lu, M., Liu, W., Zhou, H., Yang, C., and McClain, E.J., Med. Chem. Res., 2015, vol. 24, no. 5, pp. 1814–1829. https://doi.org/10.1007/s00044-014-1259-7

    Article  CAS  Google Scholar 

  5. Castelli, R., Scalvini, L., Vacondio, F., Lodola, A., Anselmi, M., Vezzosi, S., Carmi, C., Bassi, M., Ferlenghi, F., Rivara, S., Møller, I.R., Rand, K.D., Daglian, J., Wei, D., Dotsey, E.Y., Ahmed, F., Jung, K.-M., Stella, N., Singh, S., Mor, M., and Piomelli, D., J. Med. Chem., 2020, vol. 63, no. 3, pp. 1261–1280. https://doi.org/10.1021/acs.jmedchem.9b01679

    Article  CAS  PubMed  Google Scholar 

  6. Jin, C.K., Moon, J.-K., Lee, W.S., and Nam, K.S., Synlett, 2003, no. 13, pp. 1967–1968. https://doi.org/10.1055/s-2003-42050

  7. Pietka-Ottlik, M., Potaczek, P., Piasecki, E., and Mlochowski, J., Molecules, 2010, vol. 15, no. 11, pp. 8214–8228. https://doi.org/10.3390/molecules15118214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yevich, J.P., New, J.S., Smith, D.W., Lobeck, W.G., Catt, J.D., Minielli, J.L., Eison, M.S., Taylor, D.P., Riblet, L.A., and Temple D.L., Jr., J. Med. Chem., 1986, vol. 29, no. 3, pp. 359–369. https://doi.org/10.1021/jm00153a010

    Article  CAS  PubMed  Google Scholar 

  9. Shimizu, M., Kikumoto, H., Konakahara, T., Gama, Y., and Shibuya, I., Heterocycles, 1999, vol. 51, no. 12, pp. 3005–3012. https://doi.org/10.3987/COM-99-8706

    Article  CAS  Google Scholar 

  10. Sano, T., Takagi, T., Gama, Y., Shibuya, I., and Shimizu, M., Synthes, 2004, no. 10, pp. 1585–1588. https://doi.org/10.1055/s-2004-829101

  11. Yang, K., Zhang, H., Niu, B., Tang, T., and Ge, H., Eur. J. Org. Chem., 2018, vol. 2018, no. 40, pp. 5520–5523. https://doi.org/10.1002/ejoc.201801090

    Article  CAS  Google Scholar 

  12. Krasikova, V. and Katkevics, M., Chem. Heterocycl. Compd., 2013, vol. 48, no. 11, pp. 1684–1690. https://doi.org/10.1007/s10593-013-1193-5

    Article  CAS  Google Scholar 

  13. Li, T., Yang, L., Ni, K., Shi, Z., Li, F., and Chen, D., Org. Biomol. Chem., 2016, vol. 14, no. 26, pp. 6297–6303. https://doi.org/10.1039/C6OB00819D

    Article  CAS  PubMed  Google Scholar 

  14. Wang, F., Chen, C., Deng, G., and Xi, C., J. Org. Chem., 2012, vol. 77, no. 8, pp. 4148–4151. https://doi.org/10.1021/jo300250x

    Article  CAS  PubMed  Google Scholar 

  15. Takeda, H., Cometto, C., Ishitani, O., and Robert, M., ACS Catal., 2017, vol. 7, no. 1, pp. 70–88. https://doi.org/10.1021/acscatal.6b02181

    Article  CAS  Google Scholar 

  16. Kaim, V. and Kaur-Ghumaan, S., Eur. J. Inorg. Chem., 2019, vol. 2019, no. 48, pp. 5041–5051. https://doi.org/10.1002/ejic.201900988

    Article  CAS  Google Scholar 

  17. Freire, C., Pereira, C., Peixoto, A.F., and Fernandes, D.M., in Sustainable Catalysis: With Non-Endangered Metals, North, M., Ed., Cambridge: RSC Publishing, 2016, part 1, ch. 11, pp. 278–343. https://doi.org/10.1039/9781782622116-00278

  18. Carney, J.R., Dillon, B.R., and Thomas, S.P., Eur. J. Org. Chem., 2016, vol. 2016, no. 23, pp. 3912–3929. https://doi.org/10.1002/ejoc.201600018

    Article  CAS  Google Scholar 

  19. Rohit, K.R., Radhika, S., Saranya, S., and Anilkumar, G., Adv. Synth. Catal., 2020, vol. 362, no. 8, pp. 1602–1650. https://doi.org/10.1002/adsc.201901389

    Article  CAS  Google Scholar 

  20. Khusnutdinov, R.I., Bayguzina, A.R., and Dzhemilev, U.M., Russ. J. Org. Chem., 2012, vol. 48, no. 9, pp. 309–348. https://doi.org/10.1134/S1070428012090072

    Article  CAS  Google Scholar 

  21. Yang, L., Song, L., Tang, S., Li, L., Li, H., Yuan, B., and Yang, G., Eur. J. Org. Chem., 2019, vol. 2019, no. 6, pp. 1281–1285. https://doi.org/10.1002/ejoc.201801642

    Article  CAS  Google Scholar 

  22. Song, L., Li, W., Duan, W., An, J., Tang, S., Li, L., and Yang, G., Green Chem., 2019, vol. 21, no. 6, pp. 1432–1438. https://doi.org/10.1039/C9GC00091G

    Article  CAS  Google Scholar 

  23. Li, W., Duan, W., Tang, Q., Li, Z.-T., and Yang, G., Green Chem., 2021, vol. 23, no. 3, pp. 1136–1139. https://doi.org/10.1039/D0GC03861J

    Article  CAS  Google Scholar 

  24. Duan, W., Li, W., Tang, Q., Zhao, Y., Guo, X., and Yang, G., ChemistrySelect, 2021, vol. 6, no. 10, pp. 2504–2507. https://doi.org/10.1002/slct.202100725

    Article  CAS  Google Scholar 

  25. Clever, H.L., Battino, R., Miyamoto, H., Yampolski, Y., and Young, C.L., J. Phys. Chem. Ref. Data, 2014, vol. 43, no. 3, article no. 033102. https://doi.org/10.1063/1.4883876

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuchen Shang, Pan He, Yingchao Dou, Bo Yang or Guanyu Yang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The paper is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuchen Shang, He, P., Dou, Y. et al. Aerobic Oxidative Cyclization of 2-Mercaptobenzamide to 1,2-Benzoisothiazolin-3-one in the Presence of Mn(OAc)2. Catal. Ind. 15, 36–42 (2023). https://doi.org/10.1134/S2070050423010087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423010087

Keywords:

Navigation