Skip to main content
Log in

Biodiesel Production from Waste Cooking Oil, Using an Acid Modified Carbon Catalyst Derived from Cassava Peels

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

An investigation was carried out to study the feasibility of using synthesized acid-bearing carbonaceous catalyst (SO3H–C and PO4H2–C) derived from cassava peel for biodiesel production from waste cooking oil (WCO). The catalyst activity was tested using an autoclave type reactor and three different oil to alcohol ratios (1 : 3, 1 : 5 and 1 : 7) at four different temperatures (50–80°C) for 4 h. Two types of alcohol (i.e. methanol (CH3OH) and ethanol (C2H5OH) were used to understand the efficiency of using alcohol in the process. The study indicates that reaction using high ratio of alcohol (1 : 7) generally produced high yield of the biodiesel compared to other ratios. The yield of the biodiesel also increased with increasing temperature over all the reaction systems. The carbon modified with sulphuric acid catalyst showed the highest yield of ~ 90%, which was obtained at 80°C using a 1 : 7 ratio of WCO : alcohol. It was also observed that reaction with methanol produced better yields compared to ethanol reactions where significant differences were observed across both temperature and ratio. The catalysts were characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, surface area and pore volume analyses. The catalyst is of interest because it is green, non-toxic and synthesized using cassava peel waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Dyrstad, J.M., Skonhoft, A., Christensen, M.Q., and Ødegaard, E.T., Energy Policy, 2019, vol. 125, pp. 103–109. https://doi.org/10.1016/j.enpol.2018.10.051

    Article  Google Scholar 

  2. Garba, M.D. and Jackson, S.D., Appl. Petrochem. Res., 2017, vol. 7, no. 1, pp. 1–8. https://doi.org/10.1007/s13203-016-0173-y

    Article  CAS  Google Scholar 

  3. Garba, M.D. and Jackson, S.D., Appl. Petroleum Res., 2019, vol. 9, no. 2, pp. 113–125. https://doi.org/10.1007/s13203-019-0231-3

    Article  Google Scholar 

  4. Perera, F., Ashrafi, A., Kinney, P., and Mills, D., Environ. Res., 2019, vol. 172, pp. 55–72. https://doi.org/10.1016/j.envres.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  5. Cui, D., Deng, Z., and Liu, Z., Appl. Energy, 2019, vol. 254, article no. 113537. https://doi.org/10.1016/j.apenergy.2019.113537

    Article  CAS  Google Scholar 

  6. Garba, M.D., Usman, M., Khan, S., Shehzad, F., Galadima, A., Ehsan, M.F., Ghanem, A.S., and Humayun, M., J. Environ. Chem. Eng., 2021, vol. 9, no. 2, article no. 104756. https://doi.org/10.1016/j.jece.2020.104756

    Article  CAS  Google Scholar 

  7. Canesin, E.A., de Oliveira, C.C., Matsushita, M., Felicidade Dias, L., Reghiany Pedrão, M., and de Souza, N.E., Electron. J. Biotechnol., 2014, vol. 17, no. 1, pp. 39–45. https://doi.org/10.1016/j.ejbt.2013.12.007

    Article  CAS  Google Scholar 

  8. Garba, M.D. and Jackson, S.D., Appl. Petroleum Res., 2021, vol. 11, no. 1, pp. 79–88. https://doi.org/10.1007/s13203-020-00259-3

    Article  CAS  Google Scholar 

  9. Asri, N.P., Sari, D.A.P., Poedjojono, B., and Suprapto, Mod. Appl. Sci., 2015, vol. 9, no. 7, pp. 99–106. https://doi.org/10.5539/mas.v9n7p99

    Article  CAS  Google Scholar 

  10. Patil, P., Deng, S., Rhodes, J.I., and Lammers, P.J., Fuel, 2010, vol. 89, no. 2, pp. 360–364. https://doi.org/10.1016/j.fuel.2009.05.024

    Article  CAS  Google Scholar 

  11. Nas, B. and Berktay, A., Energy Sources, 2007, vol. 2, no. 1, pp. 63–71. https://doi.org/10.1080/15567240500400903

    Article  CAS  Google Scholar 

  12. Sahar, Sadaf, S., Iqbal, J., Ullah, I., Bhatti, H.N., Nourene, S., Habib-ur-Rehman, Nisar, J., and Iqbal, M., Sustainable Cities Soc., 2018, vol. 41, pp. 220–226. https://doi.org/10.1016/j.scs.2018.05.037

    Article  Google Scholar 

  13. Canakci, M. and Van Gerpen, J., Trans. ASAE, 2003, vol. 46, no. 4, pp. 945–954. https://doi.org/10.13031/2013.13948

    Article  CAS  Google Scholar 

  14. Kulkarni, M.G. and Dalai, A.K., Ind. Eng. Chem. Res., 2006, vol. 45, no. 9, p. 2901–2913. https://doi.org/10.1021/ie0510526

    Article  CAS  Google Scholar 

  15. Dong, S., Zhu, M., and Dai, B., Green Sustainable Chem., 2012, vol. 2, no. 1, pp. 8–13. https://doi.org/10.4236/gsc.2012.21002

    Article  CAS  Google Scholar 

  16. Yaakob, Z., Mohammad, M., Alherbawi, M., Alam, Z., and Sopian, K., Renewable Sustainable Energy Rev., 2013, vol. 18, pp. 184–193. https://doi.org/10.1016/j.rser.2012.10.016

    Article  CAS  Google Scholar 

  17. Galadima, A. and Muraza, O., J. Cleaner Prod., 2020, vol. 263, article no. 121358. https://doi.org/10.1016/j.jclepro.2020.121358

    Article  CAS  Google Scholar 

  18. Wang, X., Lei, Y., Yan, L., Liu, T., Zhang, Q., and He, K., Sci. Total Environ., 2019, vol. 676, pp. 18–30. https://doi.org/10.1016/j.scitotenv.2019.04.241

    Article  CAS  PubMed  Google Scholar 

  19. Ziarani, G.M., Lashgari, N., and Badiei, A., J. Mol. Catal. A: Chem., 2015, vol. 397, pp. 166–191. https://doi.org/10.1016/j.molcata.2014.10.009

    Article  CAS  Google Scholar 

  20. Pirez, C., Caderon, J.-M., Dacquin, J.-P., Lee, A.F., and Wilson, K., ACS Catal., 2012, vol. 2, no. 8, pp. 1607–1614. https://doi.org/10.1021/cs300161a

    Article  CAS  Google Scholar 

  21. Khire, S., Bhagwat, P.V., Fernandes, M., Gangundi, P.B., and Vadalia, H., Indian J. Chem. Technol., 2012, vol. 19, no. 5, pp. 342–350. http://nopr.niscpr.res.in/handle/123456789/14681.

    CAS  Google Scholar 

  22. Arata, K., Green Chem., 2009, vol. 11, no. 11, pp. 1719–1728. https://doi.org/10.1039/B822795K

    Article  CAS  Google Scholar 

  23. Da Conceição, L.R.V., Reis, C.E.R., de Lima, R., Cortez, D.V., and de Castro, H.F., RSC Adv., 2019, vol. 9, no. 41, pp. 23450–23458. https://doi.org/10.1039/C9RA04300D

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shen, S., Cai, B., Wang, C., Li, H., Dai, G., and Qin, H., Appl. Catal., A, 2014, vol. 473, pp. 70–74. https://doi.org/10.1016/j.apcata.2013.12.037

  25. Qi, X., Liu, N., and Lian, Y., RSC Adv., 2015, vol. 5, no. 23, pp. 17526–17531. https://doi.org/10.1039/C4RA15296D

    Article  CAS  Google Scholar 

  26. Malins, K., Brinks, J., Kampars, V., and Malina, I., Appl. Catal., A, 2016, vol. 519, pp. 99–106. https://doi.org/10.1016/j.apcata.2016.03.020

  27. Chellappan, S., Nair, V., Sajith, V., and Aparna, K., Bioresour. Technol. Rep., 2018, vol. 2, pp. 38–44. https://doi.org/10.1016/j.biteb.2018.04.002

    Article  Google Scholar 

  28. Suganuma, S., Nakajima, K., Kitano, M., Hayashi, S., and Hara, M., ChemSusChem, 2012, vol. 5, no. 9, pp. 1841–1846. https://doi.org/10.1002/cssc.201200010

    Article  CAS  PubMed  Google Scholar 

  29. Sandouqa, A., Al-Hamamre, Z., and Asfar, J., Renewable Energy, 2019, vol. 132, pp. 667–682. https://doi.org/10.1016/j.renene.2018.08.029

    Article  CAS  Google Scholar 

  30. Fadhil, A.B., Aziz, A.M., and Al-Tamer, M.H., Energy Convers. Manage., 2016, vol. 108, pp. 255–265. https://doi.org/10.1016/j.enconman.2015.11.013

    Article  CAS  Google Scholar 

  31. Hu, X., Gunawan, R., Mourant, D., Hasan, M.D.M., Wu, L., Song, Y., Lievens, C., and Li, C.-Z., Fuel Process. Technol., 2017, vol. 155, pp. 2–19. https://doi.org/10.1016/j.fuproc.2016.08.020

    Article  CAS  Google Scholar 

  32. Musa, I.A., Egypt. J. Pet., 2016, vol. 25, no. 1, pp. 21–31. https://doi.org/10.1016/j.ejpe.2015.06.007

    Article  Google Scholar 

  33. Yaşar, F., Fuel, 2020, vol. 264, article no. 116817. https://doi.org/10.1016/j.fuel.2019.116817

    Article  CAS  Google Scholar 

  34. Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S., and Lin, L., Clean Energy, 2019, vol. 3, no. 1, pp. 2–23. https://doi.org/10.1093/ce/zky020

    Article  Google Scholar 

  35. Bardhan, P., Deka., A., Bhattacharya, S.S., Mandal, M., and Kataki, R., in Value-Chain of Biofuels: Fundamentals, Technology, and Standardization, Yusup, S., and Rashidi, N.A., Eds., Amsterdam: Elsevier, 2022, ch. 18, pp. 395–427. https://doi.org/10.1016/B978-0-12-824388-6.00003-8

  36. Demirbas, A., Bioresour. Technol., 2008, vol. 99, no. 5, pp. 1125–1130. https://doi.org/10.1016/j.biortech.2007.02.024

    Article  CAS  PubMed  Google Scholar 

  37. Folayan, A.J., Anawe, P.A.L., Aladejare, A.E., and Ayeni, A.O., Energy Rep., 2019, vol. 5, pp. 793–806. https://doi.org/10.1016/j.egyr.2019.06.013

    Article  Google Scholar 

  38. Zhou, Y., Niu, S., and Li, J., Energy Convers. Manage., 2016, vol. 114, pp. 188–196. https://doi.org/10.1016/j.enconman.2016.02.027

    Article  CAS  Google Scholar 

  39. Oliveira, C.F., Dezaneti, L.M., Garcia, F.A.C., de Macedo, J.L., Dias, J.A., Dias, S.C.L., and Alvim, K.S.P., Appl. Catal., A, 2010, vol. 372, no. 2, pp. 153–161. https://doi.org/10.1016/j.apcata.2009.10.027

  40. Marchetti, J.M. and Errazu, A.F., Fuel, 2008, vol. 87, nos. 15–16, pp. 3477–3480. https://doi.org/10.1016/j.fuel.2008.05.011

  41. Zaidi, A., Gainer, J.L., Carta, G., Mrani, A., Kadiri, T., Belarbi, Y., and Mir, A., J. Biotechnol., 2002, vol. 93, no. 3. pp. 209–216. https://doi.org/10.1016/S0168-1656(01)00401-1

    Article  CAS  PubMed  Google Scholar 

  42. Alshehri, F., Weinert, H.M., and Jackson, S.D., React. Kinet., Mech. Catal., 2017, vol. 122, no. 2, pp. 699–714. https://doi.org/10.1007/s11144-017-1251-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha D. Garba.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

The paper is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustapha D. Garba, Sunusi, A.M., Hassan, S.A. et al. Biodiesel Production from Waste Cooking Oil, Using an Acid Modified Carbon Catalyst Derived from Cassava Peels. Catal. Ind. 15, 99–107 (2023). https://doi.org/10.1134/S2070050423010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423010038

Keywords:

Navigation