Skip to main content

Advertisement

Log in

Effect of hypoxia on the expression of microRNA in extracellular vesicles of human umbilical cord stem cells in vitro

  • Full Length Paper
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) derived extracellular vesicles, which have been shown to possess therapeutic effects for many diseases. However, how hypoxic conditions would affect exosomal microRNA expression in human umbilical cord MSCs (hUC-MSCs) is currently not investigated. This study aims to investigate the potential function of in vitro microRNAs of hUC-MSC cultured under normoxic and hypoxic conditions. Extracellular vesicles secreted from hUC-MSCs cultured in normoxic (21% O2) and hypoxic (5% O2) conditions were collected for microRNA identification. Zeta View Laser Scattering and transmission electron microscopy were used to observe the size and morphology of extracellular vesicles. qRT-PCR was performed to measure the expression of related microRNAs. The Gene Ontology and KEGG pathway were used to predict the function of microRNAs. Finally, the effects of hypoxia on the expression of related mRNAs and cellular activity were examined. This study identified 35 upregulated and 8 downregulated microRNAs in the hypoxia group. We performed target genes analysis to explore the potential function of these microRNA upregulated in the hypoxia group. Significant enrichment of the cell proliferation, pluripotency of stem cells, MAPK, Wnt, and adherens junction pathways were observed in the GO and KEGG pathways. Under hypoxic conditions, the expression levels of 7 target genes were lower than that of the normal environment. In conclusion, this study demonstrated for the first time that microRNA expression in extracellular vesicles of human umbilical vein stem cells cultured under hypoxia is different from that under normal conditions, and these microRNAs may be markers for detecting hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  • Almeria C, Weiss R, Roy M et al (2019) Hypoxia conditioned mesenchymal stem cell-derived extracellular vesicles induce increased vascular tube formation in vitro. Front Bioeng Biotechnol 7:292

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  • Baglio SR, Pegtel DM, Baldini N (2012) Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol 3:359

    Article  PubMed  PubMed Central  Google Scholar 

  • Biancone L, Bruno S, Deregibus MC, Tetta C, Camussi G (2012) Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol Dial Transplant 27(8):3037–3042

    Article  CAS  PubMed  Google Scholar 

  • Bruning U, Cerone L, Neufeld Z et al (2011) MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 31(19):4087–4096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI (2016) MSCs: the sentinel and safe-guards of injury. J Cell Physiol 231(7):1413–1416

    Article  CAS  PubMed  Google Scholar 

  • Cicione C, Muiños-López E, Hermida-Gómez T, Fuentes-Boquete I, Díaz-Prado S, Blanco FJ (2013) Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int 2013:232896

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark EA, Kalomoiris S, Nolta JA, Fierro FA (2014) Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 32(5):1074–1082

    Article  CAS  PubMed  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  PubMed  Google Scholar 

  • Dell’Aversana C, Cuomo F, Botti C, Maione C, Carissimo A, Casamassimi A, Altucci L, Cobellis G (2019) Hypoxia-regulated miRNAs in human mesenchymal stem cells: exploring the regulatory effects in ischemic disorders. Int J Mol Sci 20(6):1340

    Article  PubMed  PubMed Central  Google Scholar 

  • Efimenko A, Starostina E, Kalinina N, Stolzing A (2011) Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med 9:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraonio R, Salerno P, Passaro F et al (2012) A set of miRNAs participates in the cellular senescence program in human diploid fibroblasts. Cell Death Differ 19(4):713–721

    Article  CAS  PubMed  Google Scholar 

  • Guan JZ, Guan WP, Maeda T, Makino N (2012) Different levels of hypoxia regulate telomere length and telomerase activity. Aging Clin Exp Res 24(3):213–217

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Kim AK, Kim MH et al (2017) Protein profiling and angiogenic effect of hypoxia-cultured human umbilical cord blood-derived mesenchymal stem cells in hindlimb ischemia. Tissue Cell 49(6):680–690

    Article  CAS  PubMed  Google Scholar 

  • Han L, Wang Y, Wang L, Guo B, Pei S, Jia Y (2018) MicroRNA let-7f-5p regulates neuronal differentiation of rat bone marrow mesenchymal stem cells by targeting par6α. Biochem Biophys Res Commun 495(1):1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Harada S, Mabuchi Y, Kohyama J et al (2021) FZD5 regulates cellular senescence in human mesenchymal stem/stromal cells. Stem Cells 39(3):318–330

    Article  CAS  PubMed  Google Scholar 

  • Jun EK, Zhang Q, Yoon BS et al (2014) Hypoxic conditioned medium from human amniotic fluid-derived mesenchymal stem cells accelerates skin wound healing through TGF-β/SMAD2 and PI3K/Akt pathways. Int J Mol Sci 15(1):605–628

    Article  PubMed  PubMed Central  Google Scholar 

  • Katsman D, Stackpole EJ, Domin DR, Farber DB (2012) Embryonic stem cell-derived microvesicles induce gene expression changes in Müller cells of the retina. PLoS ONE 7(11):e50417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim AK, Kim MH, Kim S et al (2011) Stem-cell therapy for peripheral arterial occlusive disease. Eur J Vasc Endovasc Surg 42(5):667–675

    Article  PubMed  Google Scholar 

  • Kode JA, Mukherjee S, Joglekar MV, Hardikar AA (2009) Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy 11(4):377–391

    Article  CAS  PubMed  Google Scholar 

  • Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R (2016) The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 18(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Lo Cicero A, Stahl PD, Raposo G (2015) Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol 35:69–77

    Article  CAS  PubMed  Google Scholar 

  • Nam HS, Kwon I, Lee BH et al (2015) Effects of mesenchymal stem cell treatment on the expression of matrix metalloproteinases and angiogenesis during ischemic stroke recovery. PLoS ONE 10(12):e0144218

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratajczak J, Miekus K, Kucia M et al (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856

    Article  CAS  PubMed  Google Scholar 

  • Saller MM, Prall WC, Docheva D et al (2012) Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression. Biochem Biophys Res Commun 423(2):379–385

    Article  CAS  PubMed  Google Scholar 

  • Shan L, Liu S, Zhang Q, Zhou Q, Shang Y (2022) Human bone marrow-mesenchymal stem cell-derived exosomal microRNA-188 reduces bronchial smooth muscle cell proliferation in asthma through suppressing the JARID2/Wnt/β-catenin axis. Cell Cycle 21(4):352–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen GY, Ren H, Shang Q et al (2019) Let-7f-5p regulates TGFBR1 in glucocorticoid-inhibited osteoblast differentiation and ameliorates glucocorticoid-induced bone loss. Int J Biol Sci 15(10):2182–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ti D, Hao H, Tong C et al (2015) LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 13:308

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya S, Fujiwara T, Sato F et al (2011) MicroRNA-210 regulates cancer cell proliferation through targeting fibroblast growth factor receptor-like 1 (FGFRL1). J Biol Chem 286(1):420–428

    Article  CAS  PubMed  Google Scholar 

  • Wang XL, Zhao YY, Sun L et al (2018) Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7. Int J Mol Med 41(5):3063–3072

    CAS  PubMed  Google Scholar 

  • Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaher W, Harkness L, Jafari A, Kassem M (2014) An update of human mesenchymal stem cell biology and their clinical uses. Arch Toxicol 88(5):1069–1082

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Guan J, Niu X et al (2015a) Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 13:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Yang J, Tian YM, Guo H, Zhang Y (2015b) Beneficial effects of hypoxic preconditioning on human umbilical cord mesenchymal stem cells. Chin J Physiol 58(5):343–353

    CAS  PubMed  Google Scholar 

  • Zhao YJ, Gao ZC, He XJ, Li J (2021) The let-7f-5p-Nme4 pathway mediates tumor necrosis factor α-induced impairment in osteogenesis of bone marrow-derived mesenchymal stem cells. Biochem Cell Biol 99(4):488–498

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Zhang JH, Yuan S et al (2019) A new insight of kartogenin induced the mesenchymal stem cells (MSCs) selectively differentiate into chondrocytes by activating the bone morphogenetic protein 7 (BMP-7)/Smad5 pathway. Med Sci Monit 25:4960–4967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

HFZ performed the examination, and was responsible for the conception and design of the work, and writing of the first draft. ZHW was responsible for data acquisition, analysis, and interpretation of data. QQW was responsible acquisition, analysis, interpretation of data for the work, and verifying the final draft. GC and LS carried out the critical revision for important intellectual content. HFZ carried out the final check for all the data and the final approval of the version to be published. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huifen Zang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent to participate

All the authors are in agreement toparticipate.

Consent for publication

All the authors agree for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, H., Wang, Z., Wu, Q. et al. Effect of hypoxia on the expression of microRNA in extracellular vesicles of human umbilical cord stem cells in vitro. Cell Tissue Bank 24, 769–778 (2023). https://doi.org/10.1007/s10561-023-10095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-023-10095-z

Keywords

Navigation