Skip to main content
Log in

Enhanced Adsorption Of Humic Acid On Amino-Modified Bentonite

  • Original Paper
  • Published:
Clays and Clay Minerals

Abstract

Humic acid (HA) can cause environmental pollution, due to which, its removal from aqueous solutions has become an increasingly important issue. Although bentonite has an affinity for HA, the adsorption capacity of raw bentonite is still poor. As a commonly used organic modifier, 3-aminopropyltriethoxyorganosilane (APTES) exhibits excellent flocculation capability for HA. Therefore, the objective of the present study was to investigate the effectiveness of the addition of 3-aminopropyltriethoxyorganosilane (APTES) to raw bentonite to increase the adsorption of HA from aqueous solution. The experimental results showed that, when the solid-to-liquid ratio was 1:1, the amino-modified bentonite exhibited the highest adsorption capacity (qmax = 272.23 mg g-1). The adsorption affinity of amino-modified bentonite was mainly determined by the number of amino groups loaded onto its surface. The adsorption of HA on amino-modified bentonite occurred through electrostatic interactions and hydrogen bonding. These findings demonstrate the excellent potential of amino-modified bentonite in effectively remediating HA pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5

Similar content being viewed by others

References

  • Anirudhan, T. S., Suchithra, P. S., & Rijith, S. (2008). Amine-modified polyacrylamide-bentonite composite for the adsorption of humic acid in aqueous solutions. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 326, 147–156.

    Google Scholar 

  • Bagherifam, S., Brown, T. C., Fellows, C. M., Naidu, R., & Komarneni, S. (2021). Highly efficient removal of antimonite (Sb (III)) from aqueous solutions by organoclay and organozeolite: Kinetics and Isotherms. Applied Clay Science, 203, 106004.

    Article  Google Scholar 

  • Bertuoli, P. T., Piazza, D., Scienza, L. C., & Zattera, A. J. (2014). Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 87, 46–51.

    Article  Google Scholar 

  • Bhattacharyya, R., & Ray, S. K. (2015). Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical Engineering Journal, 260, 269–283.

    Article  Google Scholar 

  • Bolto, B., Dixon, D., & Eldridge, R. (2004). Ion exchange for the removal of natural organic matter. Reactive and Functional Polymers, 60, 171–182.

    Article  Google Scholar 

  • Chen, H., Koopal, L. K., Xiong, J., Avena, M., & Tan, W. (2017). Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science, 504, 457–467.

    Article  Google Scholar 

  • Chen, H., Li, Q., Wang, M., Ji, D., & Tan, W. (2020). XPS and two-dimensional FTIR correlation analysis on the binding characteristics of humic acid onto kaolinite surface. Science of the Total Environment, 724, 138154.

    Article  Google Scholar 

  • Collado, S., Oulego, P., Suarez-Iglesias, O., & Diaz, M. (2018). Biodegradation of dissolved humic substances by fungi. Applied Microbiology and Biotechnology, 102, 3497–3511.

    Article  Google Scholar 

  • Dehghani, M. H., Zarei, A., Mesdaghinia, A., Nabizadeh, R., Alimohammadi, M., Afsharnia, M., & McKay, G. (2018). Production and application of a treated bentonite–chitosan composite for the efficient removal of humic acid from aqueous solution. Chemical Engineering Research and Design, 140, 102–115.

    Article  Google Scholar 

  • Deng, S., & Bai, R. (2003a). Aminated polyacrylonitrile fibers for humic acid adsorption: behaviors and mechanisms. Environmental Science & Technology, 37, 5799–5805.

    Article  Google Scholar 

  • Deng, S., & Bai, R. (2004). Adsorption and desorption of humic acid on aminated polyacrylonitrile fibers. Journal of Colloid and Interface Science, 280, 36–43.

    Article  Google Scholar 

  • Deng, S., & Bai, R. B. (2003b). Aminated Polyacrylonitrile Fibers for Humic Acid Adsorption: Behaviors and Mechanisms. Environmental Science & Technology, 37, 5799–5805.

    Article  Google Scholar 

  • Doulia, D., Leodopoulos, C., Gimouhopoulos, K., & Rigas, F. (2009). Adsorption of humic acid on acid-activated Greek bentonite. Journal of Colloid and Interface Science, 340, 131–141.

    Article  Google Scholar 

  • Feng, Y., Hasegawa, Y., Suga, T., Nishide, H., Yang, L., Chen, G., & Li, S. (2019). Tuning conformational H-bonding arrays in aromatic/alicyclic polythiourea toward high energy-storable dielectric material. Macromolecules, 52, 8781–8787.

    Article  Google Scholar 

  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    Article  Google Scholar 

  • Ge, X., Zhang, Z., Yu, H., Zhang, B., & Cho, U. R. (2018). Study on viscoelastic behaviors of bentonite/nitrile butadiene rubber nanocomposites compatibilized by different silane coupling agents. Applied Clay Science, 157, 274–282.

    Article  Google Scholar 

  • Glatstein, D. A., & Francisca, F. M. (2015). Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite. Applied Clay Science, 118, 61–67.

    Article  Google Scholar 

  • Gupta, V. K., Gupta, M., & Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste. Water Research, 35, 1125–1134.

    Article  Google Scholar 

  • He, H., Duchet, J., Galy, J., & Gerard, J.-F. (2005). Grafting of swelling clay materials with 3-aminopropyltriethoxysilane. Journal of Colloid and Interface Science, 288, 171–176.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 76, 332–340.

    Article  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process biochemistry, 34, 451–465.

    Article  Google Scholar 

  • Hua, J. M. (2018). Adsorption of low-concentration arsenic from water by co-modified bentonite with manganese oxides and poly(dimethyldiallylammonium chloride). Journal of Environmental Chemical Engineering, 6, 156–168.

    Article  Google Scholar 

  • Huskic, M., Zigon, M., & Ivankovic, M. (2013). Comparison of the properties of clay polymer nanocomposites prepared by montmorillonite modified by silane and by quaternary ammonium salts. Applied Clay Science, 85, 109–115.

    Article  Google Scholar 

  • Jarvis, K. L., & Majewski, P. (2012). Plasma polymerized allylamine coated quartz particles for humic acid removal. Journal of Colloid and Interface Science, 380, 150–158.

    Article  Google Scholar 

  • Lan, T., Wu, P., Liu, Z., Stroet, M., Liao, J., Chai, Z., Mark, A. E., Liu, N., & Wang, D. (2022). Understanding the Effect of pH on the Solubility and Aggregation Extent of Humic Acid in Solution by Combining Simulation and the Experiment. Environmental Science & Technology, 56, 917–927.

    Article  Google Scholar 

  • Langmuir, I. (1916). The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. Journal of the American Chemical Society, 38, 2221–2295.

    Article  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  Google Scholar 

  • Li, S. X., He, M. X., Li, Z. J., Li, D. M., & Pan, Z. B. (2017). Removal of humic acid from aqueous solution by magnetic multi-walled carbon nanotubes decorated with calcium. Journal of Molecular Liquids, 230, 520–528.

    Article  Google Scholar 

  • Lowe, J., & Hossain, M. M. (2008). Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination, 218, 343–354.

    Article  Google Scholar 

  • Majzik, A., & Tombacz, E. (2007). Interaction between humic acid and montmorillonite in the presence of calcium ions I. Interfacial and aqueous phase equilibria: Adsorption and complexation. Organic Geochemistry, 38, 1319–1329.

    Article  Google Scholar 

  • Mekidiche, M., Khaldi, K., Nacer, A., Boudjema, S., Ameur, N., Lerari-Zinai, D., Bachari, K., & Choukchou-Braham, A. (2021). Organometallic modified montmorillonite application in the wastewater purification: Pollutant photodegradation and antibacterial efficiencies. Applied Surface Science, 569, 151097.

    Article  Google Scholar 

  • Mo, W., He, Q., Su, X., Ma, S., Feng, J., & He, Z. (2018). Preparation and characterization of a granular bentonite composite adsorbent and its application for Pb2+ adsorption. Applied Clay Science, 159, 68–73.

    Article  Google Scholar 

  • Naderi, A., Delavar, M. A., Ghorbani, Y., Kaboudin, B., & Hosseini, M. (2018). Modification of nano-clays with ionic liquids for the removal of Cd (II) ion from aqueous phase. Applied Clay Science, 158, 236–245.

    Article  Google Scholar 

  • Peng, X., Luan, Z., Chen, F., Tian, B., & Jia, Z. (2005). Adsorption of humic acid onto pillared bentonite. Desalination, 174, 135–143.

    Article  Google Scholar 

  • Quan, X., Sun, Z., Xu, J., Liu, S., Han, Y., Xu, Y., Meng, H., Wu, J., & Zhang, X. (2020). Construction of an aminated MIL-53(Al)-functionalized carbon nanotube for the efficient removal of bisphenol AF and metribuzin. Inorganic Chemistry, 59, 2667–2679.

    Article  Google Scholar 

  • Saldaña-Robles, A., Saldaña-Robles, N., Saldaña-Robles, A. L., Damian-Ascencio, C., Rangel-Hernández, V. H., & Guerra-Sanchez, R. (2017). Arsenic removal from aqueous solutions and the impact of humic and fulvic acids. Journal of Cleaner Production, 159, 425–431.

    Article  Google Scholar 

  • Salman, M., El-Eswed, B., & Khalili, F. (2007). Adsorption of humic acid on bentonite. Applied Clay Science, 38, 51–56.

    Article  Google Scholar 

  • Shaker, A. M., Komy, Z. R., Heggy, S. E. M., & El-Sayed, M. E. A. (2012). Kinetic Study for Adsorption Humic Acid on Soil Minerals. Journal of Physical Chemistry A, 116, 10889–10896.

    Article  Google Scholar 

  • Sposito, G. (1979). Derivation of the Langmuir equation for ion exchange reactions in soils. Soil Science Society of America Journal, 43, 197–198.

    Article  Google Scholar 

  • Sudoh, R., Islam, M. S., Sazawa, K., Okazaki, T., Hata, N., Taguchi, S., & Kuramitz, H. (2015). Removal of dissolved humic acid from water by coagulation method using polyaluminum chloride (PAC) with calcium carbonate as neutralizer and coagulant aid. Journal of Environmental Chemical Engineering, 3, 770–774.

    Article  Google Scholar 

  • Tan, X., Zhou, X., Hua, R. & Zhang, Y. Technologies for the removal of humic acid from water: A short review of recent developments. , 2010, IEEE, 1-5.

    Google Scholar 

  • Tao, Q., Xu, Z., Wang, J., Liu, F., Wan, H., & Zheng, S. (2010). Adsorption of humic acid to aminopropyl functionalized SBA-15. Microporous and Mesoporous Materials, 131, 177–185.

    Article  Google Scholar 

  • Wang, J., Li, H., & Yue, D. (2022). Enhanced adsorption of humic/fulvic acids onto urea-derived graphitic carbon nitride. Journal of Hazardous Materials, 424, 127643.

    Article  Google Scholar 

  • Wang, J., Liu, S., & Tang, W. (2017). Enhanced adsorption of humic acid on APTES modified palygorskite: behavior and mechanism. Desalination and Water Treatment, 79, 313–321.

    Article  Google Scholar 

  • Wang, J., Yue, D., Cui, D., Zhang, L., & Dong, X. (2021a). Insights into adsorption of humic substances on graphitic carbon nitride. Environmental Science & Technology, 55, 7910–7919.

    Article  Google Scholar 

  • Wang, L., Dionysiou, D. D., Lin, J., Huang, Y., & Xie, X. (2021b). Removal of humic acid and Cr(VI) from water using ZnO–30N-zeolite. Chemosphere, 279, 130491.

    Article  Google Scholar 

  • Wang, R. X., Wen, T., Wu, X. L., & Xu, A. W. (2014). Highly efficient removal of humic acid from aqueous solutions by Mg/Al layered double hydroxides-Fe3O4 nanocomposites. RSC Advances, 4, 21802–21809.

    Article  Google Scholar 

  • Xie, L., Lu, Q., Mao, X., Wang, J., Han, L., Hu, J., Lu, Q., Wang, Y., & Zeng, H. (2020). Probing the intermolecular interaction mechanisms between humic acid and different substrates with implications for its adsorption and removal in water treatment. Water Research, 176, 115766.

    Article  Google Scholar 

  • Yan, L., Low, P., & Roth, C. (1996a). Swelling pressure of montmorillonite layers versus H-O-H bending frequency of the interlayer water. Clays and Clay Minerals, 44, 749–756.

    Article  Google Scholar 

  • Yan, L., Low, P. F., & Roth, C. B. (1996b). Enthalpy changes accompanying the collapse of montmorillonite layers and the penetration of electrolyte into interlayer space. Journal of Colloid and Interface Science, 182, 417–424.

    Article  Google Scholar 

  • Yan, L., Roth, C. B., & Low, P. F. (1996c). Changes in the Si− O vibrations of smectite layers accompanying the sorption of interlayer water. Langmuir, 12, 4421–4429.

    Article  Google Scholar 

  • Yan, L., Roth, C. B., & Low, P. F. (1996d). Effects of monovalent, exchangeable cations and electrolytes on the infrared vibrations of smectite layers and interlayer water. Journal of Colloid and Interface Science, 184, 663–670.

    Article  Google Scholar 

  • Yan, L., & Stucki, J. W. (1999). Effects of Structural Fe Oxidation State on the Coupling of Interlayer Water and Structural Si−O Stretching Vibrations in Montmorillonite. Langmuir, 15, 4648–4657.

    Article  Google Scholar 

  • Yan, L., & Stucki, J. W. (2000). Structural perturbations in the solid–water interface of redox transformed nontronite. Journal of Colloid and Interface Science, 225, 429–439.

    Article  Google Scholar 

  • Yang, H., Luo, B., Lei, S., Wang, Y., Sun, J., Zhou, Z., Zhang, Y., & Xia, S. (2021). Enhanced humic acid degradation by Fe3O4/ultrasound-activated peroxymonosulfate : Synergy index, non-radical effect and mechanism. Separation and Purification Technology, 264, 118466.

    Article  Google Scholar 

  • Zhang, J., Lu, W., Zhan, S., Qiu, J., Wang, X., Wu, Z., Li, H., Qiu, Z., & Peng, H. (2021). Adsorption and mechanistic study for humic acid removal by magnetic biochar derived from forestry wastes functionalized with Mg/Al-LDH. Separation and Purification Technology, 276, 119296.

    Article  Google Scholar 

  • Zhang, Y.-J., Ou, J.-L., Duan, Z.-K., Xing, Z.-J., & Wang, Y. (2015). Adsorption of Cr(VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 481, 108–116.

    Google Scholar 

  • Zhang, Y. B., Lu, M. M., Su, Z. J., Wang, J., Tu, Y. K., Chen, X. J., Cao, C. T., Gu, F. Q., Liu, S., & Jiang, T. (2019). Interfacial reaction between humic acid and Ca-Montmorillonite: Application in the preparation of a novel pellet binder. Applied Clay Science, 180, 105177.

  • Zhao, L., Luo, F., Wasikiewicz, J. M., Mitomo, H., Nagasawa, N., Yagi, T., Tamada, M., & Yoshii, F. (2008). Adsorption of humic acid from aqueous solution onto irradiation-crosslinked carboxymethylchitosan. Bioresource Technology, 99, 1911–1917.

    Article  Google Scholar 

  • Zhou, T., Huang, S., Niu, D. J., Su, L. H., Zhen, G. Y., & Zhao, Y. C. (2018). Efficient Separation of Water-Soluble Humic Acid Using (3-Aminopropyl)triethoxysilane (APTES) for Carbon Resource Recovery from Wastewater. ACS Sustainable Chemistry & Engineering, 6, 5981–5989.

    Article  Google Scholar 

  • Zhou, T., Zhao, X., Wu, S., Su, L., & Zhao, Y. (2019). Efficient capture of aqueous humic acid using a functionalized stereoscopic porous activated carbon based on poly(acrylic acid)/food-waste hydrogel. Journal of Environmental Sciences, 77, 104–114.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program (2018YFC1802902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjuan Sun.

Ethics declarations

On behalf of all authors, the corresponding author approves all ethical responsibilities for publication in the journal Clays and Clay Minerals and consent to participate. This manuscript has not been published in full or in part previously and has not been submitted elsewhere nor is it under consideration by another journal.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Sun, H., Peng, T. et al. Enhanced Adsorption Of Humic Acid On Amino-Modified Bentonite. Clays Clay Miner. 71, 91–105 (2023). https://doi.org/10.1007/s42860-023-00233-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42860-023-00233-9

Keywords

Navigation