Skip to main content

Advertisement

Log in

CRBP-HFEF: Prediction of RBP-Binding Sites on circRNAs Based on Hierarchical Feature Expansion and Fusion

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) participate in the regulation of biological processes by binding to specific proteins and thus influence transcriptional processes. In recent years, circRNAs have become an emerging hotspot in RNA research. Due to powerful learning ability, the various deep learning frameworks have been used to predict the binding sites of RNA-binding protein (RPB) on circRNAs. These methods usually perform only single-level feature extraction of sequence information. However, the feature acquisition may be inadequate for single-level extraction. Generally, the features of deep and shallow layers of neural network can complement each other and are both important for binding site prediction tasks. Based on this concept, we propose a method that combines deep and shallow features, namely CRBP-HFEF. Specifically, features are first extracted and expanded for different levels of network. Then, the expanded deep and shallow features are fused and fed into the classification network, which finally determines whether they are binding sites. Compared to several existing methods, the experimental results on multiple datasets show that the proposed method achieves significant improvements in a number of metrics (with an average AUC of 0.9855). Moreover, much sufficient ablation experiments are also performed to verify the effectiveness of the hierarchical feature expansion strategy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

We used freely available data as described in Methods. The data are available at [https://github.com/wzf171/CRPBsites] and [https://github.com/kavin525zhang/CRIP].

References

  1. Adelman K, Egan E (2017) More uses for genomic junk. Nature 543(7644):183–185. https://doi.org/10.1038/543183a

    Article  CAS  PubMed  Google Scholar 

  2. Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885. https://doi.org/10.1016/j.molcel.2015.03.027

    Article  CAS  PubMed  Google Scholar 

  3. Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M (2017) Circular RNA: an emerging key player in RNA world. Brief Bioinform 18(4):547–557. https://doi.org/10.1093/bib/bbw045

    Article  CAS  PubMed  Google Scholar 

  4. Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res 98(1):87–97. https://doi.org/10.1002/jnr.24356

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Wang L (2019) Deep learning of the back-splicing code for circular RNA formation. Bioinformatics 35(24):5235–5242. https://doi.org/10.1093/bioinformatics/btz382

    Article  CAS  PubMed  Google Scholar 

  6. Jakobi T, Dieterich C (2019) Computational approaches for circular RNA analysis. Wiley Interdiscip Rev 10(3):1528. https://doi.org/10.1002/wrna.1528

    Article  CAS  Google Scholar 

  7. Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M, Dieterich C et al (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10(2):170–177. https://doi.org/10.1016/j.celrep.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  8. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  9. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G et al (2016) Circular RNA profiling reveals an abundant circhipk3 that regulates cell growth by sponging multiple mirnas. Nat Commun 7(1):1–13. https://doi.org/10.1038/ncomms11215

    Article  CAS  Google Scholar 

  10. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microrna sponges. Nature 495(7441):384–388. https://doi.org/10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  11. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E et al (2017) Translation of circRNAs. Mol Cell 66(1):9–21. https://doi.org/10.1016/j.molcel.2017.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barbagallo D, Caponnetto A, Brex D, Mirabella F, Barbagallo C, Lauretta G, Morrone A, Certo F, Broggi G, Caltabiano R et al (2019) Circsmarca5 regulates vegfa mrna splicing and angiogenesis in glioblastoma multiforme through the binding of srsf1. Cancers 11(2):194. https://doi.org/10.3390/cancers11020194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okholm TLH, Sathe S, Park SS, Kamstrup AB, Rasmussen AM, Shankar A, Chua ZM, Fristrup N, Nielsen MM, Vang S et al (2020) Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Med 12(1):1–22. https://doi.org/10.1186/s13073-020-00812-8

    Article  CAS  Google Scholar 

  14. Zhang H-D, Jiang L-H, Sun D-W, Hou J-C, Ji Z-L (2018) Circrna: a novel type of biomarker for cancer. Breast Cancer 25(1):1–7. https://doi.org/10.1007/s12282-017-0793-9

    Article  PubMed  Google Scholar 

  15. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu Y-M, Dhanasekaran SM, Engelke CG, Cao X et al (2019) The landscape of circular RNA in cancer. Cell 176(4):869–881. https://doi.org/10.1016/j.cell.2018.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with alu repeats. RNA 19(2):141–157. https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thakkar A, Lohiya R (2022) A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Artif Intell Rev 55(1):453–563. https://doi.org/10.1007/s10462-021-10037-9

    Article  Google Scholar 

  18. Thakkar A, Lohiya R (2021) Attack classification using feature selection techniques: a comparative study. J Ambient Intell Humaniz Comput 12:1249–1266. https://doi.org/10.1007/s12652-020-02167-9

    Article  Google Scholar 

  19. Chaudhari K, Thakkar A (2023) Neural network systems with an integrated coefficient of variation-based feature selection for stock price and trend prediction. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2023.119527

    Article  Google Scholar 

  20. Chaudhari K, Thakkar A (2023) Data fusion with factored quantization for stock trend prediction using neural networks. Inf Process Manag 60(3):103293. https://doi.org/10.1016/j.ipm.2023.103293

    Article  Google Scholar 

  21. Thakkar A, Lohiya R (2023) Fusion of statistical importance for feature selection in deep neural network-based intrusion detection system. Inf Fusion 90:353–363. https://doi.org/10.1016/j.inffus.2022.09.026

    Article  Google Scholar 

  22. Ferre F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncrna interaction. Brief Bioinform 17(1):106–116. https://doi.org/10.1093/bib/bbv031

    Article  CAS  PubMed  Google Scholar 

  23. Zhang K, Pan X, Yang Y, Shen H-B (2019) Crip: predicting circRNA-rbp-binding sites using a codon-based encoding and hybrid deep neural networks. RNA 25(12):1604–1615. https://doi.org/10.1261/rna.070565.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang Y, Hou Z, Ma Z, Li X, Wong K-C (2021) icircrbp-dhn: identification of circRNA-rbp interaction sites using deep hierarchical network. Brief Bioinform 22(4):274. https://doi.org/10.1093/bib/bbaa274

    Article  CAS  Google Scholar 

  25. Ju Y, Yuan L, Yang Y, Zhao H (2019) Circslnn: identifying rbp-binding sites on circRNAs via sequence labeling neural networks. Front Genet. https://doi.org/10.3389/fgene.2019.01184

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang Z, Lei X (2021) Prediction of rbp binding sites on circRNAs using an lstm-based deep sequence learning architecture. Brief Bioinform 22(6):342. https://doi.org/10.1093/bib/bbab342

    Article  CAS  Google Scholar 

  27. Zhang Q, Zhu L, Huang D-S (2018) High-order convolutional neural network architecture for predicting DNA-protein binding sites. IEEE/ACM Trans Comput Biol Bioinf 16(4):1184–1192. https://doi.org/10.1109/TCBB.2018.2819660

    Article  Google Scholar 

  28. Rong X (2014) word2vec parameter learning explained. arXiv preprint. https://doi.org/10.48550/arXiv.1411.2738

    Article  Google Scholar 

  29. Alam W, Ali SD, Tayara H, to Chong K (2020) A CNN-based RNA n6-methyladenosine site predictor for multiple species using heterogeneous features representation. IEEE Access 8:138203–138209. https://doi.org/10.1109/ACCESS.2020.3002995

    Article  Google Scholar 

  30. Liu B, Gao X, Zhang H (2019) Bioseq-analysis2.0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res 47(20):127. https://doi.org/10.1093/nar/gkz740

    Article  CAS  Google Scholar 

  31. Nair AS, Sreenadhan SP (2006) A coding measure scheme employing electron-ion interaction pseudopotential (eiip). Bioinformation 1(6):197

    PubMed  PubMed Central  Google Scholar 

  32. Li Q, Xu L, Li Q, Zhang L et al (2020) Identification and classification of enhancers using dimension reduction technique and recurrent neural network. Comput Math Methods Med. https://doi.org/10.1155/2020/8852258

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu Q, Chen J, Wang Y, Li S, Jia C, Song J, Li F (2021) Deeptorrent: a deep learning-based approach for predicting DNA n4-methylcytosine sites. Brief Bioinform 22(3):124. https://doi.org/10.1093/bib/bbaa124

    Article  CAS  Google Scholar 

  34. Trabelsi A, Chaabane M, Ben-Hur A (2019) Comprehensive evaluation of deep learning architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics 35(14):269–277. https://doi.org/10.1093/bioinformatics/btz339

    Article  CAS  Google Scholar 

  35. Patel R, Patel CI, Thakkar A (2012) Aggregate features approach for texture analysis. Nirma Univ Int Conf Eng (NUiCONE). https://doi.org/10.1109/NUICONE.2012.6493209

    Article  Google Scholar 

  36. Thakkar A, Chaudhari K (2022) Information fusion-based genetic algorithm with long short-term memory for stock price and trend prediction. Appl Soft Comput 128:109428. https://doi.org/10.1016/j.asoc.2022.109428

    Article  Google Scholar 

  37. Yu Y, Si X, Hu C, Zhang J (2019) A review of recurrent neural networks: Lstm cells and network architectures. Neural Comput 31(7):1235–1270. https://doi.org/10.1162/neco_a_01199

    Article  PubMed  Google Scholar 

  38. Thakkar A, Chaudhari K (2020) Predicting stock trend using an integrated term frequency-inverse document frequency-based feature weight matrix with neural networks. Appl Soft Comput 96:106684. https://doi.org/10.1016/j.asoc.2020.106684

    Article  Google Scholar 

  39. Chen T, Xu R, He Y, Wang X (2017) Improving sentiment analysis via sentence type classification using bilstm-crf and cnn. Expert Syst Appl 72:221–230. https://doi.org/10.1016/j.eswa.2016.10.065

    Article  Google Scholar 

  40. Huang Z, Xu W, Yu K (2015) Bidirectional lstm-crf models for sequence tagging. arXiv preprint. https://doi.org/10.48550/arXiv.1508.01991

    Article  Google Scholar 

  41. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention is all you need. Adv Neural Inf Process Syst. https://doi.org/10.48550/arXiv.1706.03762

    Article  Google Scholar 

Download references

Funding

This work was supported by a National Natural Science Foundation of China (No. 61972002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Li Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2,232 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Sun, ZL. & Liu, M. CRBP-HFEF: Prediction of RBP-Binding Sites on circRNAs Based on Hierarchical Feature Expansion and Fusion. Interdiscip Sci Comput Life Sci 15, 465–479 (2023). https://doi.org/10.1007/s12539-023-00572-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00572-0

Keywords

Navigation