Skip to main content

Advertisement

Log in

COLQ-related congenital myasthenic syndrome: An integrative view

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Congenital myasthenic syndromes are inherited disorders caused by mutation in components of the neuromuscular junction and manifest early in life. Mutations in COLQ gene result in congenital myasthenic syndrome. Here, we present the analysis of data from 209 patients from 195 unrelated families highlighting genotype-phenotype correlation. In addition, we describe a COLQ homozygous variant a new patient and discuss it utilizing the Phyre2 and I-TASSER programs. Clinical, molecular genetics, imaging (MRI), and electrodiagnostic (EEG, EMG/NCS) evaluations were performed. Our data showed 89 pathogenic/likely pathogenic variants including 35 missenses, 21 indels, 14 nonsense, 14 splicing, and 5 large deletions variants. Eight common variants were responsible for 48.46% of those. Weakness in proximal muscles, hypotonia, and generalized weakness were detected in all individuals tested. Apart from the weakness, extensive clinical heterogeneity was noted among patients with COLQ-related patients based on their genotypes—those with variants affecting the splice site exhibited more severe clinical features while those with missense variants displayed milder phenotypes, suggesting the role of differential splice variants in multiple functions within the muscle. Analyses and descriptions of these COLQ variants may be helpful in clinical trial readiness and potential development of novel therapies in the setting of established structure-function relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Millichap JG, Dodge PR (1960) Diagnosis and treatment of myasthenia gravis in infancy, childhood, and adolescence: a study of 51 patients. Neurology 10:1007–1014

    Article  CAS  PubMed  Google Scholar 

  2. Parr JR, Andrew MJ, Finnis M, Beeson D, Vincent A, Jayawant S (2014) How common is childhood myasthenia? The UK incidence and prevalence of autoimmune and congenital myasthenia. Arch Dis Child 99:539–542

    Article  PubMed  Google Scholar 

  3. Engel AG, Sine SM (2005) Current understanding of congenital myasthenic syndromes. Curr Opin Pharmacol 5:308–321

    Article  CAS  PubMed  Google Scholar 

  4. Guven A, Demirci M, Anlar B (2012) Recurrent COLQ mutation in congenital myasthenic syndrome. Pediatr Neurol 46:253–256

    Article  PubMed  Google Scholar 

  5. Mroczek M, Zafeiriou D, Gurgel-Gianetti J, Morais V, de Azevedo B, Roos A, Bartels E et al (2021) Three individuals with PURA syndrome in a cohort of patients with neuromuscular disease. Neuropediatrics 52:390–393

    Article  CAS  PubMed  Google Scholar 

  6. Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG (2023) Clinical and pathologic features of congenital myasthenic syndromes caused by 35 genes-a comprehensive review. Int J Mol Sci 24(4):3730

  7. Mroczek M, Iyadurai S (2023) Neuromuscular and neuromuscular junction manifestations of the PURA-NDD: a systematic review of the reported symptoms and potential treatment options. Int J Mol Sci 24

  8. Engel AG, Lambert EH, Gomez MR (1977) A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann Neurol 1:315–330

    Article  CAS  PubMed  Google Scholar 

  9. Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  CAS  PubMed  Google Scholar 

  10. Bon S, Coussen F, Massoulie J (1997) Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem 272:3016–3021

    Article  CAS  PubMed  Google Scholar 

  11. Coudert E, Gehant S, de Castro E, Pozzato M, Baratin D, Neto T et al (2023) Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 39

  12. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61–80

    Article  CAS  PubMed  Google Scholar 

  13. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7:e46688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J (2014) A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46:310–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wargon I, Richard P, Kuntzer T, Sternberg D, Nafissi S, Gaudon K et al (2012) Long-term follow-up of patients with congenital myasthenic syndrome caused by COLQ mutations. Neuromuscul Disord : NMD 22:318–324

    Article  CAS  PubMed  Google Scholar 

  17. Ohno K, Engel AG, Brengman JM, Shen XM, Heidenreich F, Vincent A et al (2000) The spectrum of mutations causing end-plate acetylcholinesterase deficiency. Ann Neurol 47:162–170

    Article  CAS  PubMed  Google Scholar 

  18. Mihaylova V, Muller JS, Vilchez JJ, Salih MA, Kabiraj MM, D’Amico A et al (2008) Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain J Neurol 131:747–759

    Article  Google Scholar 

  19. Zhao Y, Li Y, Bian Y, Yao S, Liu P, Yu M et al (2021) Congenital myasthenic syndrome in China: genetic and myopathological characterization. Ann Clin Transl Neurol 8:898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakata T, Ito M, Azuma Y, Otsuka K, Noguchi Y, Komaki H et al (2013) Mutations in the C-terminal domain of ColQ in endplate acetylcholinesterase deficiency compromise ColQ-MuSK interaction. Hum Mutat 34:997–1004

    Article  CAS  PubMed  Google Scholar 

  21. Matlik HN, Milhem RM, Saadeldin IY, Al-Jaibeji HS, Al-Gazali L, Ali BR (2014) Clinical and molecular analysis of a novel COLQ missense mutation causing congenital myasthenic syndrome in a Syrian family. Pediatr Neurol 51:165–169

    Article  PubMed  Google Scholar 

  22. Luo X, Wang C, Lin L, Yuan F, Wang S, Wang Y et al (2021) Mechanisms of congenital myasthenia caused by three mutations in the COLQ gene. Front Pediatr 9:679342

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gul Mert G, Ozcan N, Herguner O, Altunbasak S, Incecik F, Bisgin A, Ceylaner S (2019) Congenital myasthenic syndrome in Turkey: clinical and genetic features in the long-term follow-up of patients. Acta Neurol Belg 121(2):529–534

  24. Al-Shahoumi R, Brady LI, Schwartzentruber J, Tarnopolsky MA (2015) Two cases of congenital myasthenic syndrome with vocal cord paralysis. Neurology 84:1281–1282

    Article  PubMed  PubMed Central  Google Scholar 

  25. Arredondo J, Lara M, Ng F, Gochez DA, Lee DC, Logia SP et al (2014) COOH-terminal collagen Q (COLQ) mutants causing human deficiency of endplate acetylcholinesterase impair the interaction of ColQ with proteins of the basal lamina. Hum Genet 133:599–616

    Article  CAS  PubMed  Google Scholar 

  26. Khaoula R, Cerino M, Da Silva N, Delague V, Nahili H, Kriouile Y et al (2021) First characterization of congenital myasthenic syndrome type 5 in North Africa. Mol Biol Rep 48:6999–7006

    Article  CAS  PubMed  Google Scholar 

  27. Selvam P, Arunachal G, Danda S, Chapla A, Sivadasan A, Alexander M et al (2018) Congenital myasthenic syndrome: spectrum of mutations in an Indian cohort. J Clin Neuromuscul Dis 20:14–27

    Article  PubMed  Google Scholar 

  28. Tay CG, Fong CY, Li L, Ganesan V, Teh CM, Gan CS, Thong MK (2019) Congenital myasthenic syndrome with novel pathogenic variants in the COLQ gene associated with the presence of antibodies to acetylcholine receptors. J Clin Neurosci: Official J Neurosurg Soc Australas 72:468–471

  29. Kimbell LM, Ohno K, Engel AG, Rotundo RL (2004) C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J Biol Chem 279:10997–11005

    Article  CAS  PubMed  Google Scholar 

  30. Donger C, Krejci E, Serradell AP, Eymard B, Bon S, Nicole S et al (1998) Mutation in the human acetylcholinesterase-associated collagen gene, COLQ, is responsible for congenital myasthenic syndrome with end-plate acetylcholinesterase deficiency (Type Ic). Am J Hum Genet 63:967–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abicht A, Dusl M, Gallenmüller C, Guergueltcheva V, Schara U, Della Marina A et al (2012) Congenital myasthenic syndromes: achievements and limitations of phenotype-guided gene-after-gene sequencing in diagnostic practice: a study of 680 patients. Hum Mutat 33:1474–1484

    Article  CAS  PubMed  Google Scholar 

  32. Muller JS, Petrova S, Kiefer R, Stucka R, Konig C, Baumeister SK et al (2004) Synaptic congenital myasthenic syndrome in three patients due to a novel missense mutation (T441A) of the COLQ gene. Neuropediatrics 35:183–189

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Q, Sha Q, Qiao K, Liu X, Gong X, Du A (2023) Two patients with congenital myasthenic syndrome caused by COLQ gene mutations and the consequent ColQ protein defect. Heliyon 9:e13272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shapira YA, Sadeh ME, Bergtraum MP, Tsujino A, Ohno K, Shen XM et al (2002) Three novel COLQ mutations and variation of phenotypic expressivity due to G240X. Neurology 58:603–609

    Article  CAS  PubMed  Google Scholar 

  35. Pallithanam JJ, Prabhudesai SP, Naik N, Gauns S (2021) COLQ-related congenital myasthenic syndrome in a child from Western India. Neurol India 69:228–229

    Article  PubMed  Google Scholar 

  36. Ohno K, Brengman J, Tsujino A, Engel AG (1998) Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A 95:9654–9659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aharoni S, Sadeh M, Shapira Y, Edvardson S, Daana M, Dor-Wollman T et al (2017) Congenital myasthenic syndrome in Israel: genetic and clinical characterization. Neuromuscul Disord : NMD 27:136–140

    Article  PubMed  Google Scholar 

  38. Schreiner F, Hoppenz M, Klaeren R, Reimann J, Woelfle J (2007) Novel COLQ mutation 950delC in synaptic congenital myasthenic syndrome and symptomatic heterozygous relatives. Neuromuscul Disord: NMD 17:262–265

    Article  PubMed  Google Scholar 

  39. Zhang QL, Xu MJ, Wang TL, Zhu ZQ, Lai F, Zheng XC (2018) Newly discovered COLQ gene mutation and its clinical features in patients with acetyl cholinesterase deficiency. J Integr Neurosci 17:439–446

    Article  PubMed  Google Scholar 

  40. Wang W, Wu Y, Wang C, Jiao J, Klein CJ (2016) Copy number analysis reveals a novel multiexon deletion of the COLQ gene in congenital myasthenia. Neurology Genetics 2:e117

    Article  PubMed  PubMed Central  Google Scholar 

  41. Laforgia N, De Cosmo L, Palumbo O, Ranieri C, Sesta M, Capodiferro D et al (2020) The first case of congenital myasthenic syndrome caused by a large homozygous deletion in the C-terminal region of COLQ (Collagen Like Tail Subunit of Asymmetric Acetylcholinesterase) protein. Genes 11

  42. El Kadiri Y, Ratbi I, Sefiani A, Lyahyai J (2022) Novel copy number variation of COLQ gene in a Moroccan patient with congenital myasthenic syndrome: a case report and review of the literature. BMC Neurol 22:292

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ishigaki K, Nicolle D, Krejci E, Leroy JP, Koenig J, Fardeau M et al (2003) Two novel mutations in the COLQ gene cause endplate acetylcholinesterase deficiency. Neuromuscul Disord : NMD 13:236–244

    Article  PubMed  Google Scholar 

  44. Chan SH, Wong VC, Engel AG (2012) Neuromuscular junction acetylcholinesterase deficiency responsive to albuterol. Pediatr Neurol 47:137–140

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yeung WL, Lam CW, Ng PC (2010) Intra-familial variation in clinical manifestations and response to ephedrine in siblings with congenital myasthenic syndrome caused by novel COLQ mutations. Dev Med Child Neurol 52:e243–e244

    Article  PubMed  Google Scholar 

  46. Pattrakornkul N, Ittiwut C, Boonsimma P, Boonyapisit K, Khongkhatithum C, Sanmaneechai O et al (2020) Congenital myasthenic syndromes in the Thai population: clinical findings and novel mutations. Neuromuscul Disord: NMD 30(10):851–858

  47. Padmanabha H, Saini AG, Sankhyan N, Singhi P (2017) COLQ-related congenital myasthenic syndrome and response to salbutamol therapy. J Clin Neuromuscul Dis 18:162–163

    Article  PubMed  Google Scholar 

  48. Ohno K, Brengman JM, Felice KJ, Cornblath DR, Engel AG (1999) Congenital end-plate acetylcholinesterase deficiency caused by a nonsense mutation and an A-->G splice-donor-site mutation at position +3 of the collagenlike-tail-subunit gene (COLQ): how does G at position +3 result in aberrant splicing? Am J Hum Genet 65:635–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miranda F, Sampaio B, Barbosa C, R. G. (2010) Congenital myasthenic syndrome with mutation of RAPSN gene - a case study highlighting the importance of the early diagnosis. ICNApedia eJ 1:101–103

    Google Scholar 

  50. Davoudi-Dehaghani E, Zeinali S, Mahdieh N, Shirkavand A, Bagherian H, Tabatabaiefar MA (2013) A transversion mutation in non-coding exon 3 of the TMC1 gene in two ethnically related Iranian deaf families from different geographical regions; evidence for founder effect. Int J Pediatr Otorhinolaryngol 77:821–826

    Article  PubMed  Google Scholar 

  51. Kumar RS, Kuruvilla A (2010) Repetitive compound muscle action potentials in electrophysiological diagnosis of congenital myasthenic syndromes: a case report and review of literature. Ann Indian Acad Neurol 13:139–141

    Article  PubMed  PubMed Central  Google Scholar 

  52. Deprez P, Inestrosa NC (2000) Molecular modeling of the collagen-like tail of asymmetric acetylcholinesterase. Protein Eng 13:27–34

    Article  CAS  PubMed  Google Scholar 

  53. Engel AG, Ohno K, Sine SM (2003) Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci 4:339–352

    Article  CAS  PubMed  Google Scholar 

  54. Cartaud A, Strochlic L, Guerra M, Blanchard B, Lambergeon M, Krejci E et al (2004) MuSK is required for anchoring acetylcholinesterase at the neuromuscular junction. J Cell Biol 165:505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maleki F, Haghani K, Shokouhi S, Mahmoodi K, Sayehmiri K, Mahdieh N, Bakhtiyari S (2014) A case-control study on the association of common variants of CAPN10 gene and the risk of type 2 diabetes in an Iranian population. Clin Lab 60:663–670

    Article  CAS  PubMed  Google Scholar 

  56. Riazalhosseini Y, Nishimura C, Kahrizi K, Shafeghati Y, Daneshi A, Jogataie MT et al (2005) Delta (GJB6-D13S1830) is not a common cause of nonsyndromic hearing loss in the Iranian population. Arch Iran Med 5:104–108

    Google Scholar 

Download references

Acknowledgements

We would like to thank the personnels of Growth and Development Research Center and Cardiogenetic Research Laboratory, Rajaei Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejat Mahdieh.

Ethics declarations

Ethical approval

This study was approved by ethical committee of Growth and Development Research Center.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 47 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshaghian, T., Rabbani, B., Badv, R.S. et al. COLQ-related congenital myasthenic syndrome: An integrative view. Neurogenetics 24, 189–200 (2023). https://doi.org/10.1007/s10048-023-00719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-023-00719-7

Keywords

Navigation