Skip to main content
Log in

Exosomal miR-218 derived from mesenchymal stem cells inhibits endothelial-to-mesenchymal transition by epigenetically modulating of BMP2 in pulmonary fibrosis

  • RESEARCH
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Endothelial-to-mesenchymal transition (EndMT), the process by which endothelial cells lose their characteristics and acquire mesenchymal phenotypes, participates in the pathogenic mechanism of idiopathic pulmonary fibrosis. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exos) has been introduced as a promising treatment in organ fibrosis. This study aimed to explore the effects as well as the molecular mechanism for hucMSC-Exo in pulmonary fibrosis. The intravenous administration of hucMSC-Exos alleviated bleomycin-induced pulmonary fibrosis in vivo. Moreover, hucMSC-Exos elevated miR-218 expression and restored endothelial properties weakened by TGF-β in endothelial cells. Knockdown of miR-218 partially abrogated the inhibition effect of hucMSC-Exos on EndMT. Our mechanistic study further demonstrated that MeCP2 was the direct target of miR-218. Overexpressing MeCP2 aggravated EndMT and caused increased CpG islands methylation at BMP2 promoter, which lead to BMP2 post-transcriptional gene silence. Transfection of miR-218 mimic increased BMP2 expression as well, which was downregulated by overexpression of MeCP2. Taken together, these findings indicate exosomal miR-218 derived from hucMSCs may possess anti-fibrotic properties and inhibit EndMT through MeCP2/BMP2 pathway, providing a new avenue of preventive application in pulmonary fibrosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets presented in the current study are available from the corresponding author on reasonable request.

References

  • Boxer LD, Renthal W, Greben AW, Whitwam T, Silberfeld A, Stroud H, Li E, Yang MG, Kinde B, Griffith EC, Bonev B, Greenberg ME. MeCP2 represses the rate of transcriptional initiation of highly methylated long genes. Mol Cell. 2020;77(2):294-309.e9.

    Article  CAS  PubMed  Google Scholar 

  • Calvier L, Chouvarine P, Legchenko E, Hoffmann N, Geldner J, Borchert P, Jonigk D, Mozes MM, Hansmann G. PPARγ Links BMP2 and TGFβ1 pathways in vascular smooth muscle cells, regulating cell proliferation and glucose metabolism. Cell Metab. 2017;25(5):1118-1134.e7.

    Article  CAS  PubMed  Google Scholar 

  • Colucci S, Altamura S, Marques O, Dropmann A, Horvat NK, Müdder K, Hammad S, Dooley S, Muckenthaler MU. Liver sinusoidal endothelial cells suppress bone morphogenetic protein 2 production in response to TGFβ pathway activation. Hepatology. 2021;74(4):2186–200.

    Article  CAS  PubMed  Google Scholar 

  • Doherty LF, Taylor HS. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity. Fertil Steril. 2015;103(3):845–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan H, Wei G, Wu J, Fang D, Liao Z, Xiao H, Li M, Li Y. Down-regulation of miR-218-2 and its host gene SLIT3 cooperate to promote invasion and progression of thyroid cancer. J Clin Endocrinol Metab. 2013;98(8):E1334–44.

    Article  CAS  PubMed  Google Scholar 

  • He S, Barron E, Ishikawa K, NazariKhanamiri H, Spee C, Zhou P, Kase S, Wang Z, Dustin LD, Hinton DR. Inhibition of DNA methylation and methyl-CpG-binding protein 2 suppresses RPE transdifferentiation: relevance to proliferative vitreoretinopathy. Invest Ophthalmol vis Sci. 2015;56(9):5579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Tsou PS, Khanna D, Sawalha AH. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Ann Rheum Dis. 2018;77(8):1208–18.

    PubMed  Google Scholar 

  • Herrera J, Beisang DJ, Peterson M, Forster C, Gilbertsen A, Benyumov A, Smith K, Korenczuk CE, Barocas VH, Guenther K, Hite R, Zhang L, Henke CA, Bitterman PB. Dicer1 Deficiency in the idiopathic pulmonary fibrosis fibroblastic focus promotes fibrosis by suppressing microRNA biogenesis. Am J Respir Crit Care Med. 2018;198(4):486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Gharaee-Kermani M, Wu Z, Phan SH. Essential role of MeCP2 in the regulation of myofibroblast differentiation during pulmonary fibrosis. Am J Pathol. 2011;178(4):1500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulshoff MS, Del Monte-Nieto G, Kovacic J, Krenning G. Non-coding RNA in endothelial-to-mesenchymal transition. Cardiovasc Res. 2019;115(12):1716–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(2):190–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumarswamy R, Volkmann I, Jazbutyte V, Dangwal S, Park DH, Thum T. Transforming growth factor-β-induced endothelial-to-mesenchymal transition is partly mediated by microRNA-21. Arterioscler Thromb Vasc Biol. 2012;32(2):361–9.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Song S, Zha S, Wang C, Chen S, Wang F. MeCP2 promotes endothelial-to-mesenchymal transition in human endothelial cells by downregulating BMP7 expression. Exp Cell Res. 2019;375(1):82–9.

    Article  CAS  PubMed  Google Scholar 

  • Lun W, Wu X, Deng Q, Zhi F. MiR-218 regulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via targeting CTGF. Cancer Cell Int. 2018;18:83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, Mann DA. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138(2):705–14 (714.e1-4).

    Article  CAS  PubMed  Google Scholar 

  • Mansouri N, Willis GR, Fernandez-Gonzalez A, Reis M, Nassiri S, Mitsialis SA, Kourembanas S. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight. 2019;4(21): e128060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Milara J, Ballester B, Montero P, Escriva J, Artigues E, Alós M, Pastor-Clerigues A, Morcillo E, Cortijo J. MUC1 intracellular bioactivation mediates lung fibrosis. Thorax. 2020;75(2):132–42.

    Article  PubMed  Google Scholar 

  • Moran-Salvador E, Garcia-Macia M, Sivaharan A, Sabater L, Zaki MYW, Oakley F, Knox A, Page A, Luli S, Mann J, Mann DA. Fibrogenic activity of MECP2 is regulated by phosphorylation in hepatic stellate cells. Gastroenterology. 2019;157(5):1398-1412.e9.

    Article  CAS  PubMed  Google Scholar 

  • Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 2021;78(5):2031–57.

    Article  CAS  PubMed  Google Scholar 

  • Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol Rev. 2019;99(2):1281–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian W, Cai X, Qian Q, Peng W, Yu J, Zhang X, Tian L, Wang C. lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial-mesenchymal transition by competitively binding miR-141-3p. Cell Death Dis. 2019;10(2):129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren H, Guo Z, Liu Y, Song C. Stem cell-derived exosomal microRNA as therapy for vascular age-related diseases. Aging Dis. 2022;13(3):852–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roefs MT, Sluijter JPG, Vader P. Extracellular vesicle-associated proteins in tissue repair. Trends Cell Biol. 2020;30(12):990–1013.

    Article  CAS  PubMed  Google Scholar 

  • Shi ZM, Wang L, Shen H, Jiang CF, Ge X, Li DM, Wen YY, Sun HR, Pan MH, Li W, Shu YQ, Liu LZ, Peiper SC, He J, Jiang BH. Downregulation of miR-218 contributes to epithelial-mesenchymal transition and tumor metastasis in lung cancer by targeting Slug/ZEB2 signaling. Oncogene. 2017;36(18):2577–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Adam M, Matkar PN, Bugyei-Twum A, Desjardins JF, Chen HH, Nguyen H, Bazinet H, Michels D, Liu Z, Mebrahtu E, Esene L, Joseph J, Ehsan M, Qadura M, Connelly KA, Leong-Poi H, Singh KK. Endothelial-specific loss of IFT88 promotes endothelial-to-mesenchymal transition and exacerbates bleomycin-induced pulmonary fibrosis. Sci Rep. 2020;10(1):4466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Zhao C, Mao Y. MiR-218-5p Mediates myocardial fibrosis after myocardial infarction by targeting CX43. Curr Pharm Des. 2021;27(44):4504–12.

    Article  CAS  PubMed  Google Scholar 

  • Tao H, Yang JJ, Shi KH, Li J. Epigenetic factors MeCP2 and HDAC6 control α-tubulin acetylation in cardiac fibroblast proliferation and fibrosis. Inflamm Res. 2016;65(5):415–26.

    Article  CAS  PubMed  Google Scholar 

  • Tu Y, Gao X, Li G, Fu H, Cui D, Liu H, Jin W, Zhang Y. MicroRNA-218 inhibits glioma invasion, migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1. Cancer Res. 2013;73(19):6046–55.

    Article  CAS  PubMed  Google Scholar 

  • Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T, Tu Y. Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 2019;10(9):670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao X, Xu M, Yu H, Wang L, Li X, Rak J, Wang S, Zhao RC. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct Target Ther. 2021;6(1):354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Zeng Y. Therapeutic potential of exosomes in pulmonary fibrosis. Front Pharmacol. 2020;11: 590972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Wang Q, Li W, Xia L, Ge X, Shen L, Cang Z, Peng W, Shao K, Huang S. Circular RNA circEIF4G2 aggravates renal fibrosis in diabetic nephropathy by sponging miR-218. J Cell Mol Med. 2022;26(6):1799–805.

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Zhao J, Li Q, Hou L, Wang Y, Li S, Jiang F, Zhu Z, Tian L. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Res Ther. 2020a;11(1):503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Liu J, Gan Y, Dai K, Zhao J, Huang M, Huang Y, Zhuang Y, Zhang X. High-dose TGF-β1 impairs mesenchymal stem cell-mediated bone regeneration via Bmp2 inhibition. J Bone Miner Res. 2020b;35(1):167–80.

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, Tatarano S, Yonezawa T, Kinoshita T, Nakagawa M, Enokida H. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol. 2013;190(3):1059–68.

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Hu Z, Yao W, Le Q, Xu B, Liu X, Ma L. MiR-218 targets MeCP2 and inhibits heroin seeking behavior. Sci Rep. 2017;7:40413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Liu P, Jiang Y, Wang Z, Dai H, Wang C. Therapeutic applications of mesenchymal stem cells in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 2021;9: 639657.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zargar MJ, Kaviani S, Vasei M, SoufiZomorrod M, HeidariKeshel S, Soleimani M. Therapeutic role of mesenchymal stem cell-derived exosomes in respiratory disease. Stem Cell Res Ther. 2022;13(1):194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang E, Geng X, Shan S, Li P, Li S, Li W, Yu M, Peng C, Wang S, Shao H, Du Z. Exosomes derived from bone marrow mesenchymal stem cells reverse epithelial- mesenchymal transition potentially via attenuating Wnt/β-catenin signaling to alleviate silica-induced pulmonary fibrosis. Toxicol Mech Methods. 2021;31(9):655–66.

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Lu Y, Sun XH. Zebularine suppresses TGF-beta-induced lens epithelial cell-myofibroblast transdifferentiation by inhibiting MeCP2. Mol vis. 2011;17:2717–23.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 81974219 and 82101650), the Science and Technology Commission of Shanghai Municipality (No. 19DZ1204404, 20YF1429000, 21YF1436800, 21ZR1441200, and 22ZR1440900), and Shanghai Municipal Health Commision (No. 20204Y0419 and 202140044). The granting body had no role in the study design, data collection, data analysis, data interpretation, and the writing of the report or decision to submit the paper.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., L.D., and J.S. performed most of the experiments, collected, and analyzed the data. X.W. and Z.C. participated in acquiring and analyzing the data. S.C. and F.W. designed the study and drafted the manuscript. Z.L. supervised the study and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shuyan Chen, Fei Wang or Zhen Li.

Ethics declarations

Ethics approval

The animal study was approved by the Ethics Committee of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine.

Consent for publication

Not applicable.

Human ethics

Not applicable.

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Graphical Headlights

1. hucMSC-Exos possess anti-fibrotic properties through the delivery of miR-218 into HMEC.

2. Exosomal miR-218 inhibits EndMT through MeCP2/BMP2 pathway.

3. MeCP2 promotes EndMT by epigenetic modulation of BMP2.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1557 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Du, L., Sun, J. et al. Exosomal miR-218 derived from mesenchymal stem cells inhibits endothelial-to-mesenchymal transition by epigenetically modulating of BMP2 in pulmonary fibrosis. Cell Biol Toxicol 39, 2919–2936 (2023). https://doi.org/10.1007/s10565-023-09810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-023-09810-z

Keywords

Navigation