Skip to main content
Log in

Mechanical degradation of poly(ethylene terephthalate) and its structural modification by chain extender

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Characterized by high strength to unit weight, poly(ethylene terephthalate) (PET) remains one of the most widely used engineering plastics, hence the attention to its associated waste and recycling technology development has been paid from academic and industrial perspectives. Herein, we investigate the mechanical degradation of PET through degradative compounding process cycles and the effect of chain extender (Joncryl® ADR 4468) to prevent molecular degradation of PET during melt processing. They are characterized based on rheological and mechanical measurements. Characterization of the bottle-grade PET samples reveals low viscosity and crystallinity owing to isophthalic acid units within the PET copolymer structure over PET homopolymer. Mechanical shear and thermal impact by virtue of the increase in rotor speed and temperature are employed to study the degradation of the PET samples. Both samples respond to degradation in successive processing cycles with as much as 70% decrease in their complex viscosity and moduli. The molecular weight of PET copolymer accordingly decreases from 23,400 to 8010 g/mol. Chain scission arising from thermo-mechanical degradation results in high crystallinity by more than five folds in the processed PETs. Attributed to recoupling of the degraded short chains, the chain extender compensates with the increase in viscosity and moduli up to 20% whilst serving to increase crystallinity but almost ineffective in appreciating mechanical performance with barely any significant variation in tensile strength and elongation at break. This study shows that mechanical shear is verified to impact a pronounced degradation on PET more than thermal action on the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All datasets generated and analyzed during this study are available upon request from the corresponding author.

References

  1. Law KL, Starr N, Siegler TR et al (2020) The US’ contribution of plastic waste to land and ocean. Sci Adv 6:1–7. https://doi.org/10.1126/sciadv.abd0288

    Article  Google Scholar 

  2. Borrelle SB, Ringma J, Lavender Law K et al (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science (1979) 369:1515–1518. https://doi.org/10.1126/SCIENCE.ABA3656

    Article  CAS  Google Scholar 

  3. Harussani MM, Sapuan SM, Rashid U et al (2022) Pyrolysis of polypropylene plastic waste into carbonaceous char: priority of plastic waste management amidst COVID-19 pandemic. Sci Total Environ 803:149911

    Article  CAS  Google Scholar 

  4. Panowicz R, Konarzewski M, Durejko T et al (2021) Properties of polyethylene terephthalate (PET) after thermo-oxidative aging. Materials 14:3833. https://doi.org/10.3390/MA14143833

    Article  CAS  Google Scholar 

  5. Hadiyanto H, Muslihuddin M, Khoironi A et al (2022) The effect of salinity on the interaction between microplastic polyethylene terephthalate (PET) and microalgae Spirulina sp. Environ Sci Pollut Res 29:7877–7887. https://doi.org/10.1007/s11356-021-16286-z

    Article  CAS  Google Scholar 

  6. Zimmerman H, Kim NT (1980) Investigations on thermal and hydrolytic degradation of poly(ethylene terephthalate). Polym Eng Sci 20:680–683. https://doi.org/10.1002/PEN.760201008

    Article  CAS  Google Scholar 

  7. Hosseini SS, Taheri S, Zadhoush A, Mehrabani-Zeinabad A (2007) Hydrolytic degradation of poly(ethylene terephthalate). J Appl Polym Sci 103:2304–2309. https://doi.org/10.1002/app.24142

    Article  CAS  Google Scholar 

  8. Venkatachalam S, Nayak SG, Labde JV et al (2012) Degradation and recyclability of poly (ethylene terephthalate). Polyester. https://doi.org/10.5772/48612

    Article  Google Scholar 

  9. Härth M, Kaschta J, Schubert DW (2015) Rheological study of the reaction kinetics in a poly(ethylene terephthalate) melt. Polym Degrad Stab 120:70–75. https://doi.org/10.1016/j.polymdegradstab.2015.06.001

    Article  CAS  Google Scholar 

  10. Zhang A, Wang W, Dong Z et al (2022) Mechanical, thermal stability, and flame retarding properties of phosphorus-modified PET blended with DOPO-POSS. ACS Omega 7:46277. https://doi.org/10.1021/ACSOMEGA.2C04628

    Article  CAS  Google Scholar 

  11. Zhao Z, Wu Y, Wang K et al (2020) Effect of the trifunctional chain extender on intrinsic viscosity, crystallization behavior, and mechanical properties of poly(ethylene terephthalate). ACS Omega 5:19247–19254. https://doi.org/10.1021/acsomega.0c02815

    Article  CAS  Google Scholar 

  12. Incarnato L, Scarfato P, di Maio L, Acierno D (2000) Structure and rheology of recycled PET modified by reactive extrusion. Polymer (Guildf) 41:6825–6831. https://doi.org/10.1016/S0032-3861(00)00032-X

    Article  CAS  Google Scholar 

  13. Raffa P, Coltelli MB, Savi S et al (2012) Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym 72:50–60. https://doi.org/10.1016/J.REACTFUNCTPOLYM.2011.10.007

    Article  CAS  Google Scholar 

  14. Jang JY, Sadeghi K, Seo J (2022) Chain-extending modification for value-added recycled PET: a review. Polym Rev 62:860–889

    Article  CAS  Google Scholar 

  15. Shin BY, Han DH (2017) Viscoelastic properties of PLA/PCL blends compatibilized with different methods. Korea Aust Rheol J 29:295–302. https://doi.org/10.1007/S13367-017-0029-8/METRICS

    Article  Google Scholar 

  16. Pandey V, Seese M, Maia JM, Schiraldi DA (2020) Thermo-rheological analysis of various chain extended recycled poly(ethylene terephthalate). Polym Eng Sci 60:2511–2516. https://doi.org/10.1002/PEN.25488

    Article  CAS  Google Scholar 

  17. Duarte IS, Tavares AA, Lima PS et al (2016) Chain extension of virgin and recycled poly(ethylene terephthalate): effect of processing conditions and reprocessing. Polym Degrad Stab 124:26–34. https://doi.org/10.1016/j.polymdegradstab.2015.11.021

    Article  CAS  Google Scholar 

  18. Tavares AA, Silva DFA, Lima PS et al (2016) Chain extension of virgin and recycled polyethylene terephthalate. Polym Test 50:26–32. https://doi.org/10.1016/j.polymertesting.2015.11.020

    Article  CAS  Google Scholar 

  19. Jasmee S, Omar G, Masripan NAB et al (2018) Hydrophobicity performance of polyethylene terephthalate (PET) and thermoplastic polyurethane (TPU) with thermal effect. Mater Res Express. https://doi.org/10.1088/2053-1591/aad81e

    Article  Google Scholar 

  20. Awaja F, Pavel D (2005) Recycling of PET. Eur Polym J 41:1453–1477. https://doi.org/10.1016/J.EURPOLYMJ.2005.02.005

    Article  CAS  Google Scholar 

  21. Holland BJ, Hay JN (2002) The thermal degradation of PET and analogous polyesters measured by thermal analysis–fourier transform infrared spectroscopy. Polymer (Guildf) 43:1835–1847. https://doi.org/10.1016/S0032-3861(01)00775-3

    Article  CAS  Google Scholar 

  22. Schyns GZO, Shaver MP, Schyns GZO, Shaver MP (2021) Mechanical recycling of packaging plastics: a review. Macromol Rapid Commun 42:2000415. https://doi.org/10.1002/MARC.202000415

    Article  CAS  Google Scholar 

  23. Gryn’ova G, Hodgson JL, Coote ML (2010) Revising the mechanism of polymer autooxidation. Org Biomol Chem 9:480–490. https://doi.org/10.1039/C0OB00596G

    Article  Google Scholar 

  24. Villain F, Coudane J, Vert M (1994) Thermal degradation of poly(ethylene terephthalate) and the estimation of volatile degradation products. Polym Degrad Stab 43:431–440. https://doi.org/10.1016/0141-3910(94)90016-7

    Article  CAS  Google Scholar 

  25. Yang Z, Xin C, Mughal W et al (2018) High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming. J Appl Polym Sci 135:45805. https://doi.org/10.1002/APP.45805

    Article  Google Scholar 

  26. Standau T, Nofar M, Dörr D et al (2022) A review on multifunctional epoxy-based Joncryl® ADR chain extended thermoplastics. Polym Rev 62:296–350. https://doi.org/10.1080/15583724.2021.1918710

    Article  CAS  Google Scholar 

  27. Dolatshah S, Ahmadi S, Ershad Langroodi A, Alavi A (2022) Long-chain branching of polyethylene terephthalate: rheological/thermal properties of polyethylene terephthalate/carbon nanotube nanocomposite. Polym Eng Sci 62(7):2322–2334. https://doi.org/10.1002/PEN.26012

    Article  CAS  Google Scholar 

  28. Tiwary P, Kontopoulou M (2018) Rheological characterization of long-chain branched poly(lactide) prepared by reactive extrusion in the presence of allylic and acrylic coagents. J Rheol (N Y N Y) 62:1071. https://doi.org/10.1122/1.5025817

    Article  CAS  Google Scholar 

  29. Jiang Z, Guo Z, Zhang Z et al (2019) Preparation and properties of bottle-recycled polyethylene terephthalate (PET) filaments. Text Res J 89:1207–1214. https://doi.org/10.1177/0040517518767146

    Article  CAS  Google Scholar 

  30. Wu W, Sun X, Chen Q et al (2022) (2022) Recycled poly(ethylene terephthalate) from waste textiles with improved thermal and rheological properties by chain extension. Polymers 14:510. https://doi.org/10.3390/polym14030510

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2020M3H7A1098305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Sook Hong.

Ethics declarations

Conflict of interest

The authors declare no competing conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saabome, S.M., Lee, J.E., Hong, J.S. et al. Mechanical degradation of poly(ethylene terephthalate) and its structural modification by chain extender. Korea-Aust. Rheol. J. 35, 203–212 (2023). https://doi.org/10.1007/s13367-023-00059-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00059-w

Keywords

Navigation