Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

1-Cyanoacetylthiosemicarbazides: Recent Advances in their Synthesis, Reactivity in Heterocyclization, and Bio-Applications

Author(s): Samir Bondock*, Nada Alabbad, Aisha Hossan and Moaz M. Abdou

Volume 21, Issue 4, 2024

Published on: 07 July, 2023

Page: [409 - 423] Pages: 15

DOI: 10.2174/1570193X20666230529155754

Price: $65

Abstract

The synthesis of 1-cyanoacetylthiosemicarbazides is at the apex attention of researchers due to their multifaced reactivity as versatile precursors in the synthesis of mono-, bi-, and fused_heterocyclic compounds as well as metal complexes. Despite this, no comprehensive survey was, so far, dedicated to the synthesis, chemical transformation, and bioactivities of this relevant family of synthetic organic precursors and their derivatives. The present survey aims to summarize an up-to-date record of the preparation of 1-cyanoacetylthiosemicarbazides and their chemical transformation. A particular focus is given to their metal complexes and bio-applications

Keywords: Cyanoacetylthiosemicarbazide, pyrazoles, 1 , 3, 4-oxadiazoles, 1 , 3 , 4-thiadiazoles, 1, 2, 4-triazoles, pyridines, fusedhetarenes, bio-applications.

Graphical Abstract
[1]
Acharya, P.T.; Bhavsar, Z.A.; Jethava, D.J.; Patel, D.B.; Patel, H.D. A review on development of bio-active thiosemicarbazide derivatives: Recent advances. J. Mol. Struct., 2021, 1226, 129268.
[http://dx.doi.org/10.1016/j.molstruc.2020.129268]
[2]
Verma, C.; Quraishi, M.A.; Rhee, K.Y. Corrosion inhibition relevance of semicarbazides: Electronic structure, reactivity and coordination chemistry. Rev. Chem. Eng., 2022.
[http://dx.doi.org/10.1515/revce-2022-0009]
[3]
Izmestfev, A.N.; Streltsov, A.A.; Kravchenko, A.N.; Gazieva, G.A. The chemo- and regioselectivity of the cyclization of thiosemicarbazides with haloacetic acids and their derivatives. Chem. Heterocycl. Compd., 2022, 58(10), 483-492.
[http://dx.doi.org/10.1007/s10593-022-03117-3]
[4]
Aly, A.A.; Hassan, A.A.; AbdEl-latief, E-S.S.M.; AbdEl-Latief, E. S. M. An update of the use of thiocarbohydrazides and thiosemicarbazides in the preparation of heterocycles and their biological importance. J. Heterocycl. Chem., 2018, 55(10), 2196-2223.
[http://dx.doi.org/10.1002/jhet.3295]
[5]
Gazieva, G.A.; Kravchenko, A.N. Thiosemicarbazides in the synthesis of five- and six-membered heterocyclic compounds. Russ. Chem. Rev., 2012, 81(6), 494-523.
[http://dx.doi.org/10.1070/RC2012v081n06ABEH004235]
[6]
Mustafa, S.; Nair, V.; Chittoor, J.; Krishnapillai, S. Synthesis of 1, 2, 4-triazoles and thiazoles from thiosemicarbazide and its derivatives. Mini Rev. Org. Chem., 2004, 1(4), 375-385.
[http://dx.doi.org/10.2174/1570193043403082]
[7]
Hassan, A.A.; Shawky, A.M. Thiosemicarbazides in heterocyclization. J. Heterocycl. Chem., 2011, 48(3), 495-516.
[http://dx.doi.org/10.1002/jhet.553]
[8]
Danilkina, N.A.; Mikhailov, L.E.; Ivin, B.A. Condensations of thioamides with acetylenecarboxylic acid derivatives. Russ. J. Org. Chem., 2006, 42(6), 783-814.
[http://dx.doi.org/10.1134/S1070428006060017]
[9]
Li, M.; Zhang, Z.; Li, R.; Wang, J.J.; Ali, A. Removal of Pb(II) and Cd(II) ions from aqueous solution by thiosemicarbazide modified chitosan. Int. J. Biol. Macromol., 2016, 86, 876-884.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.027] [PMID: 26879912]
[10]
Alamiery, A.A. Mater. Anticorrosion effect of thiosemicarbazide derivative on mild steel in 1 M hydrochloric acid and 0.5 M sulfuric Acid: Gravimetrical and theoretical studies. Sci. Energy Technol, 2021, 4, 263.
[11]
Moharana, A.K.; Dash, R.N.; Subudhi, B.B. Thiosemicarbazides: Updates on antivirals strategy. Mini Rev. Med. Chem., 2021, 20(20), 2135-2152.
[http://dx.doi.org/10.2174/1389557520666200818212408] [PMID: 32811412]
[12]
Kozyra, P.; Korga-Plewko, A.; Karczmarzyk, Z.; Hawrył, A.; Wysocki, W.; Człapski, M.; Iwan, M.; Ostrowska-Leśko, M.; Fornal, E.; Pitucha, M. Potential anticancer agents against melanoma cells based on an as-synthesized thiosemicarbazide derivative. Biomolecules, 2022, 12(2), 151.
[http://dx.doi.org/10.3390/biom12020151] [PMID: 35204651]
[13]
Janowska, S.; Khylyuk, D.; Andrzejczuk, S.; Wujec, M. Design, synthesis, antibacterial evaluations and in silico studies of novel thiosemicarbazides and 1, 3, 4-thiadiazoles. Molecules, 2022, 27(10), 3161.
[http://dx.doi.org/10.3390/molecules27103161] [PMID: 35630638]
[14]
Siddiqui, N.; Singh, O. Antibacterial activity of some -N-substituted thiosemicarbazides and thiosemicarbazones. Indian J. Pharm. Sci., 2003, 65, 423-425.
[15]
Mitkov, J.; Kondeva-Burdina, M.; Peikova, L.; Georgieva, M.; Zlatkov, A. Design, synthesis and evaluation of semi- and thiosemicarbazides containing a methylxanthine moiety with in vitro neuroprotective and MAO-B inhibitory activities. Biotechnol. Biotechnol. Equip., 2022, 36(1), 489-502.
[http://dx.doi.org/10.1080/13102818.2022.2098819]
[16]
Wos, M.; Miazga-Karska, M.; Kaczor, A.A.; Klimek, K.; Karczmarzyk, Z.; Kowalczuk, D.; Wysocki, W.; Ginalska, G.; Urbanczyk-Lipkowska, Z.; Morawiak, M.; Pitucha, M. Novel thiosemicarbazide derivatives with 4-nitrophenyl group as multi-target drugs: α-glucosidase inhibitors with antibacterial and antiproliferative activity. Biomed. Pharmacother., 2017, 93, 1269-1276.
[http://dx.doi.org/10.1016/j.biopha.2017.07.049] [PMID: 28747001]
[17]
Pandey, S.K.; Gupta, S.; Jaiswal, S.; Gond, M.K.; Bharty, M.K.; Butcher, R.J. Synthesis, characterizations, crystal structure, dft, and hirshfeld surface analysis of 4-Cyclohexyl-1-(thiophene-2-carbonyl)thiosemicarbazide. J. Chem. Crystallogr., 2022, 53, 1-12.
[http://dx.doi.org/10.1007/s10870-022-00965-x]
[18]
Sazeli, S.; Nath, A.R.; Ahmad, M.H.; Zulkifli, N.W.M.; Johan, M.R.; Yehye, W.A.; Voon, L.H. Semicarbazide and thiosemicarbazide containing butylated hydroxytoluene moiety: new potential antioxidant additives for synthetic lubricating oil. RSC Advances, 2021, 11(13), 7138-7145.
[http://dx.doi.org/10.1039/D0RA10626G] [PMID: 35423237]
[19]
Rejmund, M.; Mrozek-Wilczkiewicz, A.; Malarz, K.; Pyrkosz-Bulska, M.; Gajcy, K.; Sajewicz, M.; Musiol, R.; Polanski, J. Piperazinyl fragment improves anticancer activity of Triapine. PLoS One, 2018, 13(4), e0188767.
[http://dx.doi.org/10.1371/journal.pone.0188767] [PMID: 29652894]
[20]
de Freitas Paulo, T.; Duhayon, C.; de França Lopes, L.G.; Silva Sousa, E.H.; Chauvin, R.; Bernardes-Génisson, V. Further insights into the oxidative pathway of thiocarbonyl-type antitubercular prodrugs: Ethionamide, thioacetazone, and isoxyl. Chem. Res. Toxicol., 2021, 34(8), 1879-1889.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00164] [PMID: 34319702]
[21]
Ramadan, E.S. Synthesis and mass spectrometry of some arylidene-hydrazinyl-thiazolines and their 2-arylidene-N-(3-chlorophenyl)hydrazinecarbothioamide precursors. SN Appl. Sci., 2019, 1(5), 451.
[http://dx.doi.org/10.1007/s42452-019-0480-x]
[22]
Arora, S.; Agarwal, S.; Singhal, S. Anticancer activities of thiosemicarbazides/thiosemicarbazones: A review. Int. J. Pharm. Pharm. Sci., 2014, 6, 34-41.
[23]
Saranya, S.; Haribabu, J.; Vadakkedathu, P.V.N.; Jerome, P.; Gomathi, K.; Rao, K.K.; Hara, S.B.V.H.; Karvembu, R.; Gayathri, D. Molecular structures, Hirshfeld analysis and biological investigations of isatin based thiosemicarbazones. J. Mol. Struct., 2019, 1198, 126904.
[http://dx.doi.org/10.1016/j.molstruc.2019.126904]
[24]
Fadda, A.A.; Bondock, S.; Rabie, R.; Etman, H.A. Cyanoacetamide derivatives as synthons in heterocyclic synthesis. Turk. J. Chem., 2008, 32(3), 259-286.
[25]
Chigorina, E.A.; Dotsenko, V.V. Novel reactions of 1-cyanoacetyl-3,5-dimethylpyrazole (microreview). Chem. Heterocycl. Compd., 2020, 56(3), 302-304.
[http://dx.doi.org/10.1007/s10593-020-02658-9]
[26]
Chigorina, E.A.; Dotsenko, V.V. 1-Cyanoacetyl-3,5-dimethylpyrazole – effective cyanoacetylating agent and a new building block for the synthesis of heterocyclic compounds (Review). Chem. Heterocycl. Compd., 2012, 48(8), 1133-1152.
[http://dx.doi.org/10.1007/s10593-012-1116-x]
[27]
Bergman, J.; Slätt, J.; Romero, I. Cyanoacetylation of indoles, pyrroles and aromatic amines with the combination cyanoacetic acid and acetic anhydride. Synthesis, 2004, 2004(16), 2760-2765.
[http://dx.doi.org/10.1055/s-2004-831164]
[28]
Mahmoud, M.; El-Shahawi, M.; Abu El-Azm, F.; Abdeen, M. Synthesis of polyfunctionally substituted heterocyclic compounds derived from 5-cinnamoylamino-2-cyanomethyl-1, 3, 4-thiadiazole. Al-Azhar Bull. Sci., 2016, 27(1), 1-8.
[http://dx.doi.org/10.21608/absb.2016.24326]
[29]
Moallem, S.A.; Hadizadeh, F.; Abdol Abadi, F.; Shahraki, M.; Shamsara, J. Synthesis and evaluation of pyridinyltriazoles as inhibitors of p38 MAP Kinase. Iran. J. Basic Med. Sci., 2012, 15(4), 945-950.
[PMID: 23493837]
[30]
Hassan, A.A.; El-Shaieb, K.M.; Shaker, R.M.; Döpp, D. New access to pyrazole, oxa(thia)diazole and oxadiazine derivatives. Heteroatom Chem., 2005, 16(1), 12-19.
[http://dx.doi.org/10.1002/hc.20071]
[31]
Voloshina, A.D.; Semenov, V.E.; Strobykina, A.S.; Kulik, N.V.; Krylova, E.S.; Zobov, V.V.; Reznik, V.S. Synthesis and antimicrobial and toxic properties of novel 1,3-bis(alkyl)-6-methyluracil derivatives containing 1,2,3- and 1,2,4-triazolium fragments. Russ. J. Bioorganic Chem., 2017, 43(2), 170-176.
[http://dx.doi.org/10.1134/S1068162017020170]
[32]
Mikhailovskii, A.G.; Korchagin, D.V.; Yusov, A.S.; Gashkova, O.V. N-Substituted cyanacetohydrazides in the synthesis of 3,3-dialkyl-1,2,3,4-tetrahydroisoquinolines by Ritter reaction. Chem. Heterocycl. Compd., 2017, 53(10), 1114-1119.
[http://dx.doi.org/10.1007/s10593-017-2180-z]
[33]
Şerban, G. 1, 2, 4-Triazoles as intermediates for the synthesis of Hybrid Molecules. Farmacia, 2016, 64(4), 549-552.
[34]
Şerban, G. 5-Arylamino-1, 3, 4-thiadiazol-2-yl acetic acid esters as intermediates for the synthesis of new bisheterocyclic compounds. Farmacia, 2015, 63, 146-149.
[35]
Elmoghayar, M.R.H.; Ghali, E.A.; Ramiz, M.M.M.; Elnagdi, M.H. Activated nitriles in heterocyclic synthesis, IV. Synthesis of 1,3,4-thiadiazole derivatives. Liebigs Ann. Chem., 1985, 1985(10), 1962-1968.
[http://dx.doi.org/10.1002/jlac.198519851005]
[36]
El-Adasy, A. Synthesis and biological activity of some novel heterocyclic sulfonamides. Pharma Chem., 2017, 9, 1-9.
[37]
Ghorab, M.; Alsaid, M.; Al-Dosari, M.; El-Gazzar, M.; Arbab, A. In-vitro anticancer evaluation of some novel thioureido-benzensulfonamide derivatives. Molecules, 2016, 21(4), 409.
[http://dx.doi.org/10.3390/molecules21040409] [PMID: 27023509]
[38]
Mahmoud, M.R.; El-Shahawi, M.M.; Abu El-Azm, F.S.; Abdeen, M. Synthesis and antimicrobial activity of polyfunctionally substituted heterocyclic compounds derived from 5‐cinnamoylamino‐2‐cyanomethyl‐1, 3, 4‐thiadiazole. J. Heterocycl. Chem., 2017, 54(4), 2352-2359.
[http://dx.doi.org/10.1002/jhet.2824]
[39]
El-Sayed, H.A.; Abd Elazim, M.H.M.; Assy, M.G.; Atef, I. Cyanoacetic acid hydrazide: An efficient access for the synthesis of multi‐functional azine and azole derivatives. J. Heterocycl. Chem., 2020, 57(4), 1974-1980.
[http://dx.doi.org/10.1002/jhet.3926]
[40]
Erian, A.W.; Manhi, F.M.; Zayed, S.E-G.; Ali, F.A.; Elnagdi, M.H. Hydrazones in heterocyclic synthesis; synthesis of 1, 3, 4-thiadiazole derivatives. Phosphorus Sulfur Silicon Relat. Elem., 1998, 133(1), 127-139.
[http://dx.doi.org/10.1080/10426509808032460]
[41]
Mahmoud, M.R.; Shiba, S.A.; El-Ziaty, A.K.; Abu El-Azm, F.S.M.; Ismail, M.F. Synthesis and reactions of novel 2, 5-disubstituted 1, 3, 4-thiadiazoles. Synth. Commun., 2014, 44(8), 1094-1102.
[http://dx.doi.org/10.1080/00397911.2013.846381]
[42]
Hashem, H.E.; Amr, A.E.G.E.; Nossier, E.S.; Elsayed, E.A.; Azmy, E.M. Synthesis, antimicrobial activity and molecular docking of novel thiourea derivatives tagged with thiadiazole, imidazole and triazine moieties as potential DNA gyrase and topoisomerase IV inhibitors. Molecules, 2020, 25(12), 2766.
[http://dx.doi.org/10.3390/molecules25122766] [PMID: 32549386]
[43]
Hemdan, M.M.; El-Mawgoude, H.K.A. Use of disubstituted thiosemicarbazide in synthesis of new derivatives of 1, 3, 4-thiadiazole, 1, 2, 4-triazole and pyrazole with their antimicrobial evaluation. J. Chem. Res., 2016, 40(6), 345-350.
[http://dx.doi.org/10.3184/174751916X14622845946035]
[44]
Abdelhamid, A.A.; Elsaghiera, A.M.M.; Aref, S.A.; Gad, M.A.; Ahmed, N.A.; Abdel-Raheem, S.A.A. Preparation and biological activity evaluation of some benzoylthiourea and benzoylurea compounds. Curr. Chem. Lett., 2021, 10(4), 371-376.
[http://dx.doi.org/10.5267/j.ccl.2021.6.001]
[45]
Hekal, M.H.; Farag, P.S.; Hemdan, M.M.; El-Sayed, W.M. New N-(1,3,4-thiadiazol-2-yl)furan-2-carboxamide derivatives as potential inhibitors of the VEGFR-2. Bioorg. Chem., 2021, 115, 105176.
[http://dx.doi.org/10.1016/j.bioorg.2021.105176] [PMID: 34303038]
[46]
Mohamed, A.M.M.; Ismail, M.F.; Madkour, H.M.F.; Aly, A.F.; Salem, M.S. Straightforward synthesis of 2-chloro- N -(5-(cyanomethyl)-1,3,4-thiadiazol-2-yl)benzamide as a precursor for synthesis of novel heterocyclic compounds with insecticidal activity. Synth. Commun., 2020, 50(22), 3424-3442.
[http://dx.doi.org/10.1080/00397911.2020.1802652]
[47]
Hemdan, M.M.; El-Sayed, A.A.E. Use of Phthalimidoacetyl isothiocyanate as a scaffold in the synthesis of target heterocyclic systems, and their antimicrobial assessment. Chem. Pharm. Bull. , 2016, 64(5), 483-489.
[http://dx.doi.org/10.1248/cpb.c16-00099] [PMID: 27150480]
[48]
Balicki, R.; Nantka-Namirski, P. Cancerostatics. Part V. Synthesis of some acyl hydrazine derivatives. Acta Pol. Pharm., 1988, 45(1), 1-7.
[PMID: 3138893]
[49]
Shams, H.Z.; Mohareb, R.M.; Helal, M.H.; Mahmoud, A.E. Synthesis, structure elucidation, and biological evaluation of some fused and/or pendant thiophene, pyrazole, imidazole, thiazole, triazole, triazine, and coumarin systems based on cyanoacetic 2-[(benzoylamino) thioxomethyl] hydrazide. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(2), 237-263.
[http://dx.doi.org/10.1080/10426500600892776]
[50]
Abdel-Latif, E.; Khalil, A.G.M. Efficient synthesis of some new functionalized 3-amino- and 5-aminopyrazoles derivatives. Res. Chem. Intermed., 2015, 41(7), 4555-4567.
[http://dx.doi.org/10.1007/s11164-014-1551-7]
[51]
El-Metwaly, N.; Katouah, H.; Aljuhani, E.; Alharbi, A.; Alkhatib, F.; Aljohani, M.; Alzahrani, S.; Alfaifi, M.Y.; Khedr, A.M. Synthesis and elucidation for new nanosized Cr (III)-pyrazolin complexes; crystal surface properties, antitumor simulation studies beside practical apoptotic path. J. Inorg. Organomet. Polym. Mater., 2020, 30(10), 4142-4154.
[http://dx.doi.org/10.1007/s10904-020-01561-2]
[52]
Metwally, M.A.; Abdel-Galil, E.; Metwally, A.; Amer, F.A. New azodisperse dyes with thiazole, thiophene, pyridone and pyrazolone moiety for dyeing polyester fabrics. Dyes Pigments, 2012, 92(3), 902-908.
[http://dx.doi.org/10.1016/j.dyepig.2011.07.009]
[53]
Elgemeie, G.H.; Elghandour, A.H.; Elaziz, G.W.A. Novel cyanoketene N, S ‐Acetals and pyrazole derivatives using potassium 2‐cyanoethylene‐1‐thiolates. Synth. Commun., 2007, 37(17), 2827-2834.
[http://dx.doi.org/10.1080/00397910701473317]
[54]
Sheng, C.; Liu, N.; Tu, J.; Ji, C.; Dong, G.; Wu, S. CN patent 108440414A, ,
[55]
Bondock, S.; Tarhoni, A.E.G.; Fadda, A.A. Synthesis and reactions of some new thiobarbituric acid derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(8), 1915-1936.
[http://dx.doi.org/10.1080/10426500701415907]
[56]
Mohareb, R.M.; Ho, J.Z.; Mohamed, A.A. Uses of 1-Cyanoacetyl-4-phenyl-3-thiosemicarbazide in Heterocyclic Synthesis: synthesis of thiazole, coumarin, and pyridine derivatives with antimicrobial and antifungal activities. Phosphorus Sulfur Silicon Relat. Elem., 2007, 182(8), 1661-1681.
[http://dx.doi.org/10.1080/10426500701289914]
[57]
Bondock, S.; Tarhoni, A.E.G.; Fadda, A.A. Heterocyclic synthesis with 4-benzoyl-1-cyanoacetylthiosemicarbazide: selective synthesis of some thiazole, triazole, thiadiazine, pyrrylthiazole, and pyrazolo [1, 5-a] triazine derivatives. Monatsh. Chem., 2008, 139(2), 153-159.
[http://dx.doi.org/10.1007/s00706-007-0764-5]
[58]
Mohareb, R.; Mohamed, A.A. Uses of 1-cyanoacetyl-4-phenyl-3-thiosemicarbazide in the synthesis of antimicrobial and antifungal heterocyclic compounds. Int. Res. J. Pure Appl. Chem., 2012, 2(2), 144-155.
[http://dx.doi.org/10.9734/IRJPAC/2012/1334]
[59]
Basyouni, W.M.; El-Bayouki, K.A.H.M. Synthesis of novel 1,3-thiazole-, 1,2,4-triazole- thione and triazepine derivatives. J. Chem. Res., 2005, 2005(6), 356-360.
[http://dx.doi.org/10.3184/0308234054506730]
[60]
Wardakhan, W.W.; El-Sayed, N.N.E.; Wardakhan, W.W.; El-Sayed, N.N. New approaches for the synthesis of 1, 3, 4-thiadiazole and 1, 2, 4-triazole derivatives with antimicrobial activity. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(3), 790-804.
[http://dx.doi.org/10.1080/10426500802274534]
[61]
Serban, G.; Coman, M.; Curea, E. The chemical behaviour of some new heterocyclic coumarins in the alkylation reaction. Farmaciabucuresti, 2005, 53, 49.
[62]
Fahmy, H.T. Synthesis of some new triazoles as potential antifungal agents. Boll. Chim. Farm., 2001, 140(6), 422-427.
[PMID: 11822232]
[63]
Şerban, G.; Horvath, T. 1, 2, 4-Triazoles as intermediates for the synthesis of Hybrid Molecules. Clujul Med., 2011, 84, 547-549.
[64]
Khamees Thabet, H. Thabet. H. K. Sebacoyl Isothiocyanate in the synthesis of bis (1,3,4-thiadiazole, 1,3,4-thiadiazolo[3,2-a]pyridine, 4-thiazolidinone, chromenes, and naphtho[1,2-b][1,4]oxazine) derivatives. Orient. J. Chem., 2020, 36(2), 320-326.
[http://dx.doi.org/10.13005/ojc/360215]
[65]
Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem., 2012, 48, 192-199.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.013] [PMID: 22204901]
[66]
Elgemeie, G.E.H.; El-Ezbawy, S.R.; Ali, H.A.; Mansour, A.K. Synthesis of several N-substituted amino-2-pyridones. Org. Prep. Proced. Int., 1994, 26(4), 465-468.
[http://dx.doi.org/10.1080/00304949409458037]
[67]
Elmoghayar, M.R.H.; El-Agamey, A.G.A.; Nasr, M.Y.A.S.; Sallam, M.M.M. Activated nitriles in heterocyclic synthesis. Part III. Synthesis of N -amino-2-pyridone, pyranopyrazole and thiazolopyridine derivatives. J. Heterocycl. Chem., 1984, 21(6), 1885-1887.
[http://dx.doi.org/10.1002/jhet.5570210660]
[68]
Smolnikov, S.; Gorgopina, E.; Lezhnyova, V.; Ong, G.; Chui, W.K.; Dolzhenko, A. 4-Phenethylthio-2-phenylpyrazolo[1,5-a][1,3,5]triazin-7(6H)-one. Molbank, 2017, 2017(4), M970.
[http://dx.doi.org/10.3390/M970]
[69]
Gampe, C.M.; Kahne, D.E.; Kahne, S.W.; Qiao, Y.; East, S.; Parkes, A.L.; Southey, M.; Hunter, J.; Whittaker, M.; Arthuis, M. Preparation of 6H, 7H-pyrazolo [1, 5-a][1, 3, 5] triazin-7-one Derivatives as inhibitors of bacterial glycosyl transferases. WO Patent 2016191658, 2016.
[70]
Girgis, A.S.; Barsoum, F.F. Synthesis of [1,2,4]triazolo[1,5-a]pyridines of potential PGE2 inhibitory properties. Eur. J. Med. Chem., 2009, 44(5), 1972-1977.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.049] [PMID: 19027198]
[71]
Basyouni, W.M.; El-Bayouki, K.A.M.; Hosni, H.M. Synthesis of novel mesoionic [1,2,4]triazolo[1,5-a]pyridin-4-ium-2-thiolates with antibacterial activity. J. Chem. Res., 2003, 2003(12), 755-756.
[http://dx.doi.org/10.3184/030823403322840521]
[72]
Ramadan, S.K.; Ibrahim, N.A.; El-Kaed, S.A.; El-Helw, E.A.E. New potential fungicides pyrazole-based heterocycles derived from 2-cyano-3-(1,3-diphenyl-1 H -pyrazol-4-yl) acryloyl isothiocyanate. J. Sulfur Chem., 2021, 42(5), 529-546.
[http://dx.doi.org/10.1080/17415993.2021.1909591]
[73]
El-Metwally, N.M.; Gabr, I.M.; Shallaby, A.M.; El-Asmy, A.A. Synthesis and spectroscopic characterization of new mono- and binuclear complexes of some NH(1) thiosemicarbazides. J. Coord. Chem., 2005, 58(13), 1145-1159.
[http://dx.doi.org/10.1080/00958970500155771]
[74]
Mekheimer, R.A.; Shaker, R.M. Synthesis and Reactivity of 3-Alkylthio-5-cyanomethyl-4-phenyl-1,2,4-triazoles. J. Chem. Res., 1999, 23(2), 76-77.
[http://dx.doi.org/10.1177/174751989902300205]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy