Skip to main content

Advertisement

Log in

Zinc Ortho Methyl Carbonodithioate Improved Pre and Post-Synapse Memory Impairment via SIRT1/p-JNK Pathway against Scopolamine in Adult Mice

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is globally recognized as a prominent cause of dementia for which efficient treatment is still lacking. New candidate compounds that are biologically potent are regularly tested. We, therefore, hypothesized to study the neuroprotective potential of Zinc Ortho Methyl Carbonodithioate (thereafter called ZOMEC) against Scopolamine (SCOP) induced Alzheimer’s disease (AD) model using adult albino mice. We post-administered ZOMEC (30 mg/Kg) into two group of mice for three weeks on daily basis that received either 0.9% saline or SCOP (1 mg/Kg) for initial two weeks. The other two groups of mice received 0.9% saline and SCOP (1 mg/Kg) respectively. After memory related behavioral analysis the brain homogenates were evaluated for the antioxidant potential of ZOMEC and multiple protein markers were examined through western blotting. Our results provide enough evidences that ZOMEC decrease oxidative stress by increasing catalase (CAT) and glutathione S transferase (GST) and decreasing the lipid peroxidation (LPO). The SIRT1 and pre and post synaptic marker proteins, synaptophysin (SYP) as well as post synaptic density protein (PSD-95) expression were also enhanced upon ZOMEC treatment. Furthermore, memory impairment was rescued and ZOMEC appreciably abrogated the Aβ accumulation, BACE1 expression C and the p-JNK pathway. The inflammatory protein markers, NF-kβ and IL-1β in ZOMEC treated mice were also comparable with control group. The predicted interaction of ZOMEC with SIRT1 was further confirmed by molecular docking. These findings thus provide initial reports on efficacy of ZOMEC in SCOP induced AD model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Αl-Najjar AA, Shehata MR, Mohamed M, Shoukry MM (1999) Equilibrium studies of organotin(IV) complexes of peptides. Main Group Met Chem 22(4):253–262

    Article  Google Scholar 

  • Bandaru VVR, Troncoso J, Wheeler D, Pletnikova O, Wang J, Conant K, Haughey NJ (2009) ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer’s but not normal brain. Neurobiol Aging 30(4):591–599

    Article  CAS  PubMed  Google Scholar 

  • Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    Article  CAS  PubMed  Google Scholar 

  • Chong ZZ, Shang YC, Wang S, Maiese K (2012) SIRT1: new avenues of discovery for disorders of oxidative stress. Expert Opin Ther Targets 16(2):167–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24(8):1023–1027

    Article  CAS  PubMed  Google Scholar 

  • Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. PNAS 101(7):2070–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donmez G (2012) The effects of SIRT1 on Alzheimer's disease models. Inter J Alzheimer’s Dis 2012:509529

  • Evin G, Hince C (2013) BACE1 as a therapeutic target in Alzheimer’s disease: rationale and current status. Drugs Aging 30(10):755–764

    Article  CAS  PubMed  Google Scholar 

  • Godoy JA, Zolezzi JM, Braidy N, Inestrosa NC (2014) Role of Sirt1 during the ageing process. Mol Neurobiol 50(3):744–756

    Article  CAS  PubMed  Google Scholar 

  • Gomar A, Hosseini A, Mirazi N, Gomar M (2015) Effect of Zingiber Officinale (ginger rhizomes) hydroethanolic extract on hyoscine-induced memory impairment in adult male rats. ICNSJ 2(3):105–110

    Google Scholar 

  • Haas RH (2019) Mitochondrial dysfunction in aging and diseases of aging. Biology (Basel) 8:48

    CAS  PubMed  Google Scholar 

  • Huang C, Wen C, Yang M, Li A, Fan C, Gan D, Li Q, Zhao J, Zhu L, Lu D (2021) Astaxanthin improved the cognitive deficits in APP/PS1 transgenic mice via selective activation of mTOR. J Neuroimmune Pharmacol 16(3):609–619

    Article  PubMed  Google Scholar 

  • Ikram M, Ullah R, Khan A, Kim MO (2020) Ongoing research on the role of Gintonin in the management of neurodegenerative disorders. Cells 9(6):1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imran M, Al Kury LT, Nadeem H, Shah FA, Abbas M, Naz S, Khan AU, Li S (2020) Benzimidazole containing acetamide derivatives attenuate neuroinflammation and oxidative stress in ethanol-induced neurodegeneration. Biomolecules 10:108. https://doi.org/10.3390/biom10010108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javed F, Ali S, Shah MW, Munawar KS, Shahzadi S, Hameedullah Fatima H, Ahmed M, Sharma SK, Qanungo K (2014) Synthesis, characterization, semi-empirical study, and biological activities of organotin (IV) and transition metal complexes with o-methyl carbonodithioate. J Coord Chem 67(16):2795–2808

    Article  CAS  Google Scholar 

  • Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK (2019) Nuclear factor- kappa β as a therapeutic target for Alzheimer’s disease. J Neurochem 150(2):113–137

    Article  CAS  PubMed  Google Scholar 

  • Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53(1):648–661

    Article  CAS  PubMed  Google Scholar 

  • Kasapoglu M, Özben T (2001) Alterations of antioxidant enzymes and oxidative stress markers in aging. Exp Gerontol 36(2):209–220

    Article  CAS  PubMed  Google Scholar 

  • Kawahara M, Kato-Negishi M, Tanaka KI (2020) Amyloids: Regulators of metal homeostasis in the synapse. Molecules 25(6):1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The Role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24:325–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Knopman DS, Amieva H, Peterson RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT (2021) Alzheimer disease. Nat Rev Dis Primers 7(1):1–21

    Article  Google Scholar 

  • Kouémou NE, Taiwe GS, Moto FC, Pale S, Ngoupaye GT, Njapdounke JSK, Nkantchousa GCN, Pahaye DB, Bum EN (2017) Nootropic and neuroprotective effects of Dichrocephala Integrifolia on scopolamine mouse model of Alzheimer’s disease. Front Pharmacol 8:847

    Article  PubMed  PubMed Central  Google Scholar 

  • Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della-Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P (2018) Oxidative stress, aging, and diseases. Clin Interv Aging 13:757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahdi O, Baharuldin MT, Nor NH, Chirosma SM, Jagadeesan S, Moklas MA (2019) Chemicals used for the induction of Alzheimer’s disease-like cognitive dysfunctions in rodents. Biomed Res and Ther 6(11):3460–3484

    Article  Google Scholar 

  • Malekzadeh S, Edalatmanesh MA, Mehrabani D, Shariati M (2017) Drugs induced Alzheimer’s disease in animal model. Galen Med J 6(3):185–196

    Google Scholar 

  • Muhammad N, Shuja S, Ali S, Butler IS, Meetsma A, Khan M (2009) New dimeric, trimeric and supramolecular organotin (IV) dithiocarboxylates: synthesis, structural characterization and biocidal activities. Polyhedron 28(16):3439–3448

    Article  Google Scholar 

  • Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO (2019b) Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol 14(2):278–294

    Article  PubMed  Google Scholar 

  • Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO (2019a) Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 11(3):648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullane K, Williams M (2019) Preclinical models of Alzheimer’s disease: relevance and translational validity. Curr Protoc Pharmacol 84(1):e57

    Article  PubMed  Google Scholar 

  • Naseer MI, Ullah I, Narasimhan ML, Lee HY, Bressan RA, Yoon GH, Yun DJ, Kim MO (2014) Neuroprotective effect of osmotin against ethanol-induced apoptotic neurodegeneration in the developing rat brain. Cell Death Dis 5(3):e1150–e1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath M, Pokharia S, Yadav R (2001) Organotin(IV) complexes of amino acids and peptides. Coord Chem Rev 215(1):99–149

    Article  CAS  Google Scholar 

  • Norgan AP, Coffman PK, Kocher JP, Katzmann DJ, Sosa CP (2011) Multilevel parallelization of AutoDock 4.2. J Cheminform. 3(1):1–9

    Article  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  • Park SW, Lee CH, Cho HY, Seo MK, Lee LG, Lee BJ, Seol W, Kee BS, Kim YH (2013) Effects of antipsychotic drugs on the expression of synaptic proteins and dendritic outgrowth in hippocampal neuronal cultures. Synapse 67(5):224–234

    Article  CAS  PubMed  Google Scholar 

  • Patil SP, Jain PD, Sancheti JS, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacol 86:192–202

    Article  CAS  Google Scholar 

  • Pellerito L, Nagy L (2002) Organotin(IV)n+ complexes formed with biologically active ligands: equilibrium and structural studies, and some biological aspects. Coord Chem Rev 224(1):111–150

    Article  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Piechal A, Blecharz-Klin K, Pyrzanowska J, Widy-Tyszkiewicz E (2012) Maternal zinc supplementation improves spatial memory in rat pups. Biol Trace Elem Res 147(1):299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon Y, Silvia V, Maite S, Maria JR (2016) c-Jun N-terminal Kinase (JNK) Signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol. https://doi.org/10.3389/fphar.2015.00321

    Article  Google Scholar 

  • Sabapathy K (2012) Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106:145–169

    Article  CAS  PubMed  Google Scholar 

  • Sabine Becker J, Matusch A, Palm C, Salber D, Morton KA, Susanne BJ (2010) Bioimaging of metals in brain tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and metallomics. Metallomics 2:104–111

    Article  PubMed  Google Scholar 

  • Salles A, Romano A, Freudenthal R (2014) Synaptic NF-kappa B pathway in neuronal plasticity and memory. J Physiol Paris 108(4–6):256–262

    Article  PubMed  Google Scholar 

  • Sarubbo F, Ramis MR, Kienzer C, Aparicio S, Esteban S, Miralles A, Moranta D (2018) Chronic silymarin, quercetin and naringenin treatments increase monoamines synthesis and hippocampal Sirt1 levels improving cognition in aged rats. J Neuroimmune Pharmacol 13(1):24–38

    Article  CAS  PubMed  Google Scholar 

  • Sathya M, Premkumar P, Karthick C, Moorthi P, Jayachandran KS, Anusuyadevi M (2012) BACE1 in Alzheimer’s disease. Clin Chim Acta 414:171–178

    Article  CAS  PubMed  Google Scholar 

  • Scott TL, Rangaswamy S, Wicker CA, Izumi T (2014) Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal 20(4):708–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah SA, Lee HY, Bressan RA, Yun DJ, Kim MO (2014) Novel osmotin attenuates glutamateinduced synaptic dysfunction and neurodegeneration via the JNK/PI3K/Akt pathway in postnatal rat brain. Cell Death Dis 5(1):e1026–e1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY, Kim MO (2017) Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer’s disease neuropathological deficits. Mol Psychiatry 22(3):407–416

    Article  CAS  PubMed  Google Scholar 

  • Shaheen F, Ali S, Rehman ZU, Meetsma A (2012) Structural properties and antibacterial potency of new supramolecular organotin(IV) dithiocarboxylates. Polyhedron 31(1):697–703

    Article  CAS  Google Scholar 

  • Sirajuddin M, Ali S, Shah NA, Khan MR, Tahir MN (2012) Synthesis, characterization, biological screenings and interaction with calf thymus DNA of a novel azomethine 3- ((3,5-dimethylphenylimino) methyl) benzene-1, 2-diol. Spectrochimic Acta A Mol Biomol Spectrosc 94:134–142

    Article  CAS  Google Scholar 

  • Smith MA, Rottkamp CA, Nunomura A, Raina AK, Perry G (2000) Oxidative stress in Alzheimer’s disease. Biochem Biophys Acta Mol Basis Dis; BBA-MOL BASIS DIS 1502(1):139–44

    Article  CAS  Google Scholar 

  • Stewart JJP (1991) Optimization and application of magnesium parameters for PM3. J Comput Chem 12:320–328

    Article  CAS  Google Scholar 

  • Stewart JJP (2016) Stewart computational chemistry—MOPAC. Colorado Springs, CO, USA

  • Takeda A, Tamano H (2017) The impact of synaptic Zn2+ dynamics on cognition and its decline. Int J Mol Sci 18:2411

    Article  PubMed  PubMed Central  Google Scholar 

  • Tambe R, Jain P, Patil S, Ghumatkar P, Sathaye S (2015) Protective effects of Diosgenin in Pentylenetetrazole induced kindling model of epilepsy in mice. Neurochem Neuropharm Open Access 1:106

    Google Scholar 

  • Terry RD (2000) Cell death or synaptic loss in Alzheimer’s disease. J Neuropathol Exp Neurol 59(12):1118–1119

    Article  CAS  PubMed  Google Scholar 

  • Tiekink ER (2008) Tin dithiocarbamates: applications and structures. App Organomet Chem 22(9):533–550

    Article  CAS  Google Scholar 

  • Tomasselli AG, Qahwash I, Emmons TL, Lu Y, Leone JW, Lull JM, Fok KM, Bannow CA, Smith CW, Bienkowski MJ, Heinrikson RL, Yan R (2003) Employing a superior BACE1 cleavage sequence to probe cellular APP processing. J Neurochem 84(5):1006–1017

    Article  CAS  PubMed  Google Scholar 

  • Ullah U, Badshah H, Malik Z, Uddin Z, Alam M, Sarwar S, Aman A, Khan AU, Shah FA (2020) Hepatoprotective effects of melatonin and celecoxib against ethanol-induced hepatotoxicity in rats. Immunopharmacol Immunotoxicol 42:1–9

    Article  Google Scholar 

  • Vachharajani VT, Liu T, Wang X, Hoth JJ, Yoza BK, McCall CE (2016) Sirtuins link inflammation and metabolism. J Immunol Res 2016:8167273

    Article  PubMed  PubMed Central  Google Scholar 

  • VanGuilder HD, Farley JA, Yan H, Van Kirk CA, Mitschelen M, Sonntag WE, Freeman WM (2011) Hippocampal dysregulation of synaptic plasticity-associated proteins with age related cognitive decline. Neurobiol Dis 43(1):201–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SY, Tang BL (2016) SIRT1 as a therapeutic target for Alzheimer’s disease. Rev Neurosci 27(8):813–825

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Gaynor RB (2001) Role of the NF-kB pathway in the pathogenesis of human disease states. Curr Mol Med 1(3):287–296

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Jin L, Zhang X, Yu X (2013) Effects of maternal mild zinc deficiency and zinc supplementation in offspring on spatial memory and hippocampal neuronal ultrastructural changes. Nutrition 29(2):457–461

    Article  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9(1):1–8

    Article  Google Scholar 

  • Zheng L, Wang C, Luo T, Lu B, Ma H, Zhou Z, Zhu D, Chi G, Ge P, Luo Y (2017) JNK activation contributes to oxidative stress-induced parthanatos in glioma cells via increase of intracellular ROS production. Mol Neurobiol 54(5):3492–3505

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Su B, Wang X, Smith MA, Perry G (2007) Causes of oxidative stress in Alzheimer’s disease. Cell Mol Life Sci 64(17):2202–2210

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The computations were partially performed at the Center for High-Performance Computing, Shanghai Jiao Tong University. We acknowledge their help.

Funding

Dong-Qing Wei is supported by grants from the Key Research Area Grant 2016YFA0501703 of the Ministry of Science and Technology of China, the National Science Foundation of China (Grant No. 32070662, 61832019, 32030063), the Science and Technology Commission of Shanghai Municipality (Grant No.: 19430750600), the Natural Science Foundation of Henan Province (162300410060), as well as SJTU JiRLMDS Joint Research Fund and Joint Research Funds for Medical and Engineering and Scientific Research at Shanghai Jiao Tong University (YG2017ZD14). The computations were partially performed at the Pengcheng Lab. and the Center for High-Performance Computing, Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and result analysis were performed by Rifat Jahan, Hamayun Khan, Shahid Ali Shah, Musarrat Ijaz, Nousheen Bibi, Fatima Javed, Abdul Aziz Khan and Arif Ali. Mohammad Yousaf designed and supervised the study. Dong-Qing Wei also supervised the project and secured funding. Abdul Aziz Khan addressed the revision comments. The first draft of the manuscript was written by Rifat Jahan and all co-authors commented on previous versions of the manuscript. All co-authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Yousaf or Dong-Qing Wei.

Ethics declarations

Ethical Approval and Consent to Participate

The experimental procedures were performed with all the measures established by the Ethics Committee of the NMMRC (Neuro Molecular Medicine Research Center) according to the guidelines of NIH (International Institute of Health, USA). Only the authors participated in the current study.

Ethical Statement

On behalf of all co-authors it is stated that this study was performed with all the measures established by the Ethics Committee of the NMMRC (Neuro Molecular Medicine Research Center) according to the guidelines of NIH (International Institute of Health, USA).

Consent for Publication

All the authors were agreed for publication of the current study.

Disclosure of Potential Conflicts of Interest

The authors have no conflict of interest.

Competing Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, R., Yousaf, M., Khan, H. et al. Zinc Ortho Methyl Carbonodithioate Improved Pre and Post-Synapse Memory Impairment via SIRT1/p-JNK Pathway against Scopolamine in Adult Mice. J Neuroimmune Pharmacol 18, 183–194 (2023). https://doi.org/10.1007/s11481-023-10067-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-023-10067-w

Keywords

Navigation