Skip to main content
Log in

The generation of 5-N-glycolylneuraminic acid as a consequence of high levels of reactive oxygen species

  • Research
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The presence of N-glycolylneuraminic acid (Neu5Gc), a non-human sialic acid in cancer patients, is currently attributed to the consumption of red meat. Excess dietary red meat has been considered a risk factor causing chronic inflammation and for the development of cancers. However, it remains unknown whether Neu5Gc can be generated via a chemical reaction rather than via a metabolic pathway in the presence of high levels of reactive oxygen species (ROS) found in the inflammatory and tumor environments. In this study, the conversion of N-acetylneuraminic acid (Neu5Ac) to Neu5Gc has been assessed in vitro under conditions mimicking the hydroxyl radical-rich humoral environment found in inflammatory and cancerous tissues. As a result, Neu5Gc has been detected via liquid chromatography-multiple reaction monitoring mass spectrometry. Furthermore, this conversion has also been found to take place in serum biomatrix containing ROS and in cancer cell cultures with induced ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CE:

collision energy

CMAH:

N-acetylneuraminic acid hydroxylase

DCFH-DA:

2’,7’-dichlorodihydrofluorescein diacetate

DP:

declustering potential

LC-Q-TRAP MS; LC-MRM:

liquid chromatography-multiple reaction monitoring-mass spectrometry

Neu5Gc:

RE%, Relative Error

ROS:

reactive oxygen species

SA:

sialic acid

References

  1. Pearce, O.M., Laubli, H.: Sialic acids in cancer biology and immunity. Glycobiology 26, 111–128 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. Varki, A.: Are humans prone to autoimmunity? Implications from evolutionary changes in hominin sialic acid biology. J. Autoimmun. 83, 134–142 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. Gruszewska, E., Cylwik, B., Panasiuk, A., Szmitkowski, M., Flisiak, R., Chrostek, L.: Total and free serum sialic acid concentration in liver diseases. Biomed. Res. Int. 2014, 876096 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paszkowska, A., Berbec, H., Semczuk, A., Cybulski, M.: Sialic acid concentration in serum and tissue of endometrial cancer patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 76, 211–215 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Feijoo, C., Paez, de la Cadena. M., Rodriguez-Berrocal, F.J., Martinez-Zorzano, V.S.: Sialic acid levels in serum and tissue from colorectal cancer patients. Cancer Lett. 112, 155-160 (1997)

  6. Varki, A.: N-glycolylneuraminic acid deficiency in humans. Biochimie 83, 615–622 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Samraj, A.N., Pearce, O.M., Läubli, H., Crittenden, A.N., Bergfeld, A.K., Banda, K., Gregg, C.J., Bingman, A.E., Secrest, P., Diaz, S.L., Varki, N.M., Varki, A.: A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl. Acad. Sci. USA 112, 542-547 (2015)

  8. Deng, L.Q., Chen, X., Varki, A.: Exploration of Sialic Acid Diversity and Biology Using Sialoglycan Microarrays. Biopolymers 99, 650–665 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bergfeld, A.K., Pearce, O.M., Diaz, S.L., Lawrence, R., Vocadlo, D.J., Choudhury, B., Esko, J.D., Varki, A.: Metabolism of vertebrate amino sugars with N-glycolyl groups: incorporation of N-glycolylhexosamines into mammalian glycans by feeding N-glycolylgalactosamine. J. Biol. Chem. 287, 28898–28916 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bergfeld, A.K., Pearce, O.M., Diaz, S.L., Pham, T., Varki, A.: Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. J. Biol. Chem. 287, 28865–28881 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bardor, M., Nguyen, D.H., Diaz, S., Varki, A.: Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J. Biol. Chem. 280, 4228–4237 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. Pan, A., Sun, Q., Bernstein, A.M., Schulze, M.B., Manson, J.E., Stampfer, M.J., Willett, W.C., Hu, F.B.: Red meat consumption and mortality: results from 2 prospective cohort studies. Arch. Intern. Med. 172, 555–563 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  13. Banda, K., Gregg, C.J., Chow, R., Varki, N.M., Varki, A.: Metabolism of vertebrate amino sugars with N-glycolyl groups: mechanisms underlying gastrointestinal incorporation of the non-human sialic acid xeno-autoantigen N-glycolylneuraminic acid. J. Biol. Chem. 287, 28852–28864 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liou, G.Y., Storz, P.: Reactive oxygen species in cancer. Free Radic Res 44, 479–496 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. Oktyabrsky, O.N., Smirnova, G.V.: Redox regulation of cellular functions. Biochemistry (Mosc) 72, 132–145 (2007)

    CAS  PubMed  Google Scholar 

  16. Nogueira, V., Hay, N.: Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 19, 4309–4314 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niethammer, P., Grabher, C., Look, A.T., Mitchison, T.J.: A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996–999 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prowse, S.J., Michalski, W.P., Fahey, K.J.: Enhanced H2O2 release from immune chicken leucocytes following infection with Eimeria tenella. Immunol. Cell Biol. 70(Pt 1), 41–48 (1992)

    Article  CAS  PubMed  Google Scholar 

  19. Driessens, N., Versteyhe, S., Ghaddhab, C., Burniat, A., De Deken, X., Van Sande, J., Dumont, J.E., Miot, F., Corvilain, B.: Hydrogen peroxide induces DNA single- and double-strand breaks in thyroid cells and is therefore a potential mutagen for this organ. Endocr. Relat. Cancer 16, 845–856 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Szatrowski, T.P., Nathan, C.F.: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991)

    CAS  PubMed  Google Scholar 

  21. Lim, S.D., Sun, C., Lambeth, J.D., Marshall, F., Amin, M., Chung, L., Petros, J.A., Arnold, R.S.: Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate 62, 200–207 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Song, Y., Driessens, N., Costa, M., De Deken, X., Detours, V., Corvilain, B., Maenhaut, C., Miot, F., Van Sande, J., Many, M.C., Dumont, J.E.: Roles of hydrogen peroxide in thyroid physiology and disease. J. Clin. Endocrinol. Metab. 92, 3764–3773 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. Lennicke, C., Rahn, J., Lichtenfels, R., Wessjohann, L.A., Seliger, B.: Hydrogen peroxide - production, fate and role in redox signaling of tumor cells. Cell Commun. Signal 13, 39 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lopez-Lazaro, M.: Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett. 252, 1–8 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. O’Donnell-Tormey, J., DeBoer, C.J., Nathan, C.F.: Resistance of human tumor cells in vitro to oxidative cytolysis. J. Clin. Invest. 76, 80–86 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sullivan, L.B., Chandel, N.S.: Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2, 17 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wen, C.P., Lee, J.H., Tai, Y.P., Wen, C., Wu, S.B., Tsai, M.K., Hsieh, D.P., Chiang, H.C., Hsiung, C.A., Hsu, C.Y., Wu, X.: High serum iron is associated with increased cancer risk. Cancer Res. 74, 6589–6597 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Li, F., Kishida, T., Kobayashi, M.: Serum iron and ferritin levels in patients with colorectal cancer in relation to the size, site, and disease stage of cancer. J. Gastroenterol. 34, 195–199 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. Huang, X.: Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat. Res. 533, 153–171 (2003)

    Article  CAS  PubMed  Google Scholar 

  30. Kucharzewski, M., Braziewicz, J., Majewska, U., Gozdz, S.: Selenium, copper, and zinc concentrations in intestinal cancer tissue and in colon and rectum polyps. Biol. Trace Elem. Res. 92, 1–10 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Pardoe, H., Clark, P.R., St Pierre, T.G., Moroz, P., Jones, S.K.: A magnetic resonance imaging based method for measurement of tissue iron concentration in liver arterially embolized with ferrimagnetic particles designed for magnetic hyperthermia treatment of tumors. Magn. Reson. Imaging 21, 483–488 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. Hornik, P., Milde, D., Trenz, Z., Vysloužil, K., Stužka, V.: Colon tissue concentrations of copper, iron, selenium, and zinc in colorectal carcinoma patients. Chemical Papers 60, 297–301 (2006)

    Article  CAS  Google Scholar 

  33. Pearce, O.M., Varki, A.: Chemo-enzymatic synthesis of the carbohydrate antigen N-glycolylneuraminic aci:d from glucose. Carbohydr. Res. 345, 1225–1229 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, F., Xie, B., Wang, B., Troy, F.A. 2nd.: LC-MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers. Glycobiology 25, 1362-1374 (2015)

  35. Samraj, A.N., Laubli, H., Varki, N., Varki, A.: Involvement of a non-human sialic Acid in human cancer. Front. Oncol. 4, 33 (2014)

    PubMed  PubMed Central  Google Scholar 

  36. Hernandez, A.M., Toledo, D., Martínez, D., Griñán, T., Brito, V., Macías, A., Alfonso, S., Rondón, T., Suárez, E., Vázquez, A.M., Pérez, R.: Characterization of the antibody response against NeuGcGM3 ganglioside elicited in non-small cell lung cancer patients immunized with an anti-idiotype antibody. J. Immunol. 181, 6625–6634 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. Taylor, R.E., Gregg, C.J., Padler-Karavani, V., Ghaderi, D., Yu, H., Huang, S., Sorensen, R.U., Chen, X., Inostroza, J., Nizet, V., Varki, A.: Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J. Exp. Med. 207, 1637–1646 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shathili, A.M., Brown, H.M., Everest-Dass, A.V., Tan, T.C.Y., Parker, L.M., Thompson, J.G., Packer, N.H.: The effect of streptozotocin-induced hyperglycemia on N-and O-linked protein glycosylation in mouse ovary. Glycobiology 28, 832–840 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. Mwangi, D.W., Bansal, D.D.: Evidence of free radical participation in N-glycolylneuraminic acid generation in liver of chicken treated with gallotannic acid. Indian J. Biochem. Biophys. 41, 20–28 (2004)

    CAS  PubMed  Google Scholar 

  40. Hedlund, M., Tangvoranuntakul, P., Takematsu, H., Long, J.M., Housley, G.D., Kozutsumi, Y., Suzuki, A., Wynshaw-Boris, A., Ryan, A.F., Gallo, R.L., Varki, N., Varki, A.: N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol. Cell Biol. 27, 4340–4346 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hokke, C.H., Bergwerff, A.A., van Dedem, G.W., van Oostrum, J., Kamerling, J.P., Vliegenthart, J.F.: Sialylated carbohydrate chains of recombinant human glycoproteins expressed in Chinese hamster ovary cells contain traces of N-glycolylneuraminic acid. FEBS Lett. 275, 9–14 (1990)

    Article  CAS  PubMed  Google Scholar 

  42. Kawai, T., Kato, A., Higashi, H., Kato, S., Naiki, M.: Quantitative determination of N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor-associated sialic acid by gas chromatography-mass spectrometry. Cancer Res. 51, 1242–1246 (1991)

    CAS  PubMed  Google Scholar 

  43. Mertsalov, I.B., Novikov, B.N., Scott, H., Dangott, L., Panin, V.M.: Characterization of Drosophila CMP-sialic acid synthetase activity reveals unusual enzymatic properties. Biochem. J. 473, 1905–1916 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Noel, M., Noel, M., Gilormini, P.A., Cogez, V., Yamakawa, N., Vicogne, D., Lion, C., Biot, C., Guérardel, Y., Harduin-Lepers, A.: Probing the CMP-Sialic Acid Donor Specificity of Two Human beta-d-Galactoside Sialyltransferases (ST3Gal I and ST6Gal I) Selectively Acting on O- and N-Glycosylproteins. Chembiochem. 18, 1251–1259 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gross, H.J., Sticher, U., Brossmer, R.: A highly sensitive fluorometric assay for sialyltransferase activity using CMP-9-fluoresceinyl-NeuAc as donor. Anal Biochem 186, 127–134 (1990)

    Article  CAS  PubMed  Google Scholar 

  46. Mortezai, N., Behnken, H.N., Kurze, A.K., Ludewig, P., Buck, F., Meyer, B., Wagener, C.: Tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens bind to C-type lectin CLEC10A (CD301, MGL). Glycobiology 23, 844–852 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. Devine, P.L., Clark, B.A., Birrell, G.W., Layton, G.T., Ward, B.G., Alewood, P.F., McKenzie, I.F.: The breast tumor-associated epitope defined by monoclonal antibody 3E1.2 is an O-linked mucin carbohydrate containing N-glycolylneuraminic acid. Cancer Res. 51, 5826-5836 (1991)

  48. Padler-Karavani, V., Yu, H., Cao, H., Chokhawala, H., Karp, F., Varki, N., Chen, X., Varki, A.: Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18, 818–830 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Higa, H.H., Paulson, J.C.: Sialylation of glycoprotein oligosaccharides with N-acetyl-, N-glycolyl-, and N-O-diacetylneuraminic acids. J. Biol. Chem. 260, 8838–8849 (1985)

    Article  CAS  PubMed  Google Scholar 

  50. Jaroonwitchawan, T., Chaicharoenaudomrung, N., Namkaew. J., Noisa. P.: Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci. Lett. 636, 40-47 (2017)

  51. Seo, N., Ko, J., Lee, D., Jeong, H., Oh, M.J., Kim, U., Lee, D.H., Kim, J., Choi, Y.J., An, H.J.: In-depth characterization of non-human sialic acid (Neu5Gc) in human serum using label-free ZIC-HILIC/MRM-MS. Anal Bioanal Chem. 413(20), 5227–5237 (2021)

    Article  CAS  PubMed  Google Scholar 

  52. Iijima, R., Takahashi, H., Namme, R., Ikegami, S., Yamazaki, M.: Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett. 561(1–3), 163–6 (2004)

    Article  CAS  PubMed  Google Scholar 

  53. Neyra, C., Paladino, J., Le Borgne, M.: Oxidation of sialic acid using hydrogen peroxide as a new method to tune the reducing activity. Carbohydr Res. 11(386), 92–8 (2014)

    Article  Google Scholar 

  54. Bashir S, Fezeu LK, Leviatan Ben-Arye S, Yehuda S, Reuven EM, Szabo de Edelenyi F, Fellah-Hebia I, Le Tourneau T, Imbert-Marcille BM, Drouet EB, Touvier M, Roussel JC, Yu H, Chen X, Hercberg S, Cozzi E, Soulillou JP, Galan P, Padler-Karavani V. Association between Neu5Gc carbohydrate and serum antibodies against it provides the molecular link to cancer: French NutriNet-Santé study. BMC Med. 18(1), 262 (2020)

Download references

Acknowledgements

The authors thank Dr. Ying Xu and Dr. Xingze Qu (The Third Hospital, Jilin University) for the discussion of Fenton reaction. The authors thank Prof. Bo Wang (Department of Chemistry, Jilin University) for the discussion of the mechanism of hydroxylation reaction.

Funding

Y.G. thanks the Department of Science and Technology of Jilin Province, China [grant number 20200801066GH].

Author information

Authors and Affiliations

Authors

Contributions

Y.G. conceived and designed the experiments; R.B. and J.W. performed the experiments; Y.G., R.B. and J.W. analyzed the data; Y.G., R.B., J.W. and IB contributed to the preparation of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yin Gao.

Ethics declarations

Ethical Approval

None.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4555 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, R., Wang, J., Brockhausen, I. et al. The generation of 5-N-glycolylneuraminic acid as a consequence of high levels of reactive oxygen species. Glycoconj J 40, 435–448 (2023). https://doi.org/10.1007/s10719-023-10121-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10121-y

Keywords

Navigation