Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-07T05:22:23.978Z Has data issue: false hasContentIssue false

EQUILIBRIUM STATES FOR CENTER ISOMETRIES

Published online by Cambridge University Press:  02 June 2023

Pablo D. Carrasco*
Affiliation:
ICEx, UFMG, Belo Horizonte, Minas Gerais, Brazil BR31270-90
Federico Rodriguez-Hertz
Affiliation:
Department of Mathematics - Eberly College of Science, Penn State, State College, Pennsylvania, USA PA 16802 (hertz@math.psu.edu)

Abstract

We develop a geometric method to establish the existence and uniqueness of equilibrium states associated to some Hölder potentials for center isometries (as are regular elements of Anosov actions), in particular, the entropy maximizing measure and the SRB measure. A characterization of equilibrium states in terms of their disintegrations along stable and unstable foliations is also given. Finally, we show that the resulting system is isomorphic to a Bernoulli scheme.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

P.D.C. is partially supported by FAPEMIG Universal APQ-02160-21.

F. R.-H. is partially supported by NSF grant DMS-1900778

References

Anosov, D., Geodesic flows on closed Riemannian manifolds of negative curvature, Proc. Steklov Math. Inst. 90 (1967), 1235.Google Scholar
Bonthonneau, Y., Guillarmou, C. and Weich, T., SRB measures for Anosov actions, Preprint, Arxiv:2103.12127.Google Scholar
Bowen, R., Symbolic dynamics for hyperbolic flows, Am. J. Math. 95(2) (1973), 429460.CrossRefGoogle Scholar
Bowen, R., Bernoulli equilibrium states for axiom A diffeomorphisms, Math. Syst. Theory 8(4) (1974a), 289294.CrossRefGoogle Scholar
Bowen, R., Some systems with unique equilibrium states, Math. Syst. Theory 8(3) (1974b), 193202.CrossRefGoogle Scholar
Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lect. Notes in Math.) vol. 470 (Springer Verlag, 2008).CrossRefGoogle Scholar
Bowen, R. and Ruelle, D., The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181202.CrossRefGoogle Scholar
Brin, M. and Katok, A., On local entropy, Proc. Conf. in Dyn. Sys, Rio de Janeiro (Lecture Notes in Mathematics), vol. 1007 (Springer, 1983), 3038.Google Scholar
Burns, K. and Wilkinson, A., On the ergodicity of partially hyperbolic systems, Ann. Math. 171 (2010), 451489.CrossRefGoogle Scholar
Buzzi, J., Thermodynamical formalism for piecewise invertible maps: Absolutely continuous invariant measures as equilibrium states, in A. Katok, R. de la Llave, Y. Pesin and H. Weiss (eds.) Smooth Ergodic Theory and Its Applications (Proceedings of Symposia in Pure Mathematics) vol. 69 (American Mathematical Society, 2001), 749783.CrossRefGoogle Scholar
Buzzi, J., Fisher, T. and Tahzibi, A., A dichotomy for measures of maximal entropy near time-one maps of transitive Anosov flows, Ann. Scient. Ec. Norm. Sup. 55(4) (2021), 9691002.CrossRefGoogle Scholar
Call, B. and Thompson, D. J., Equilibrium states for self-products of flows and the mixing properties of rank 1 geodesic flows, J. London Math. Soc. 105(2) (2022), 794824.CrossRefGoogle Scholar
Carrasco, P. D. and Rodriguez-Hertz, F., Contributions to the ergodic theory of hyperbolic flows: unique ergodicity for quasi-invariant measures and equilibrium states for the time-one map, To appear in Isr. J. Math. (2022).Google Scholar
Climenhaga, V., Pesin, Y. and Zelerowicz, A., Equilibrium measures for some partially hyperbolic systems, J. Mod. Dyn. 16(0) (2020), 155205.CrossRefGoogle Scholar
Denker, M., Keller, G. and Urbanski, M., On the uniqueness of equilibrium states for piecewise monotone mappings, Stud. Math. 1(97) (1985), 2736.Google Scholar
Dolgopyat, D., Lectures on U-Gibbs states, Lecture notes (2001).Google Scholar
Dolgopyat, D., Livsic theory for compact group extensions of hyperbolic systems, Moscow Mathematical Journal 5(1) (2005), 5566.CrossRefGoogle Scholar
Furstenberg, H., Strict ergodicity and transformation of the torus, Am. J. Math. 83(4) (1961), 573.CrossRefGoogle Scholar
Grayson, M., Pugh, C. and Shub, M., Stably ergodic diffeomorphisms, Ann. Math. 140(2) (1994), 295329.CrossRefGoogle Scholar
Haydn, N., Canonical product structure of equilibrium states, Random Comput. Dynam. (1994).Google Scholar
Haydn, N. T. A. and Ruelle, D., Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification, Comm. Math. Phys. 148(1) (1992), 155167.CrossRefGoogle Scholar
Hertz, F. R., Hertz, M. A. R. and Ures, R., Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle, Invent. Math. 172 (2008), 353381.CrossRefGoogle Scholar
Hertz, F. R., Hertz, M. R. and Ures, R., A survey of partially hyperbolic dynamics, in Forni, G., Lyubich, M., Pugh, C. and Shub, M. (eds.) Partially Hyperbolic Dynamics, Laminations and Teichmüller Flow (Fields Institute Communications) vol. 51 (American Mathematical Society, 2007), 3588.Google Scholar
Hirsch, M., Pugh, C. and Shub, M., Invariant Manifolds (Lect. Notes in Math.) vol. 583 (Springer Verlag, 1977).CrossRefGoogle Scholar
Katok, A., Smooth non-Bernoulli K-automorphisms, Invent. Math. 61(3) (1980), 291299.CrossRefGoogle Scholar
Katok, A. and Spatzier, R. J., Invariant measures for higher-rank hyperbolic abelian actions, Ergod. Theor. Dyn. Syst. 16(4) (1996), 751778.CrossRefGoogle Scholar
Ledrappier, F., Mesures d’équilibre d’entropie complètement positive, in Systèmes dynamiques II - Varsovie (Astérisque) no. 50 (Société mathématique de France, 1977).Google Scholar
Ledrappier, F. and Strelcyn, J. M., A proof of the estimation from below in Pesin’s entropy formula , Ergod. Theor. Dyn. Syst. 2 (1982), 203219.CrossRefGoogle Scholar
Ledrappier, F. and Young, L.-S., The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. Math. 122 (1985), 509539.CrossRefGoogle Scholar
Leplaideur, R., Local product structure for equilibrium states, Trans. Amer. Math. Soc. 352(4) (2000), 18891912.CrossRefGoogle Scholar
Li, X. and Wu, W., Bernoulli property of equilibrium states for certain partially hyperbolic diffeomorphisms, J. Dyn. Differ. Equ. (2021).CrossRefGoogle Scholar
Margulis, G. A., On Some Aspects of the Theory of Anosov Systems (Springer, 2004).CrossRefGoogle Scholar
Misiurewicz, M., Topological conditional entropy, Stud. Math. 55(2) (1976), 175200.CrossRefGoogle Scholar
Ornstein, D. and Weiss, B., Geodesic flows are Bernoullian, Isr. J. Math. 14(2) (1973), 184198.CrossRefGoogle Scholar
Pesin, Y., Characteristic Lyapunov exponents, and smooth ergodic theory, Russian Math. Surveys 32(4) (1977), 55114.CrossRefGoogle Scholar
Pesin, Y., Lectures on Partial Hyperbolicity and Stable Ergodicity (Zurich Lectures in Advanced Mathematics) (European Mathematical Society, 2004).CrossRefGoogle Scholar
Pesin, Y. B. and Sinai, Y. G., Gibbs measures for partially hyperbolic attractors, Ergod . Theor. Dyn. Syst. 2(3–4) (1982).Google Scholar
Plante, J., Anosov flows, Am. J. Math. 94 (1972), 729754.CrossRefGoogle Scholar
Pollicott, M. and Walkden, C. P., Livsic theorems for connected Lie groups, Trans. Amer. Math. Soc. 353(7) (2001), 28792895.CrossRefGoogle Scholar
Pugh, C. and Shub, M., Ergodicity of Anosov actions, Invent. Math. 15 (1972), 123.CrossRefGoogle Scholar
Pugh, C. and Shub, M., Stable ergodicity and julienne quasi-conformality, Journal of the European Mathematical Society 2(1) (2000), 152.CrossRefGoogle Scholar
Pugh, C., Shub, M. and Wilkinson, A., Hölder foliations, Duke Math. J. 86(3) (1997), 17546.CrossRefGoogle Scholar
Ratner, M., Markov partitions for anosov flows on n-dimensional manifolds, Isr. J. Math. 15(1) (1973), 92114.CrossRefGoogle Scholar
Ratner, M., Anosov flows with Gibbs measures are also Bernoullian, Isr. J. Math. 17(4) (1974), 380391.CrossRefGoogle Scholar
Rohlin, V., On the Fundamental Ideas of Measure Theory, Transl. Amer. Math. Soc. 10 (1962), 152.Google Scholar
Ruelle, D., A measure associated with Axiom-A attractors, Am. J. Math. 98(3) (1976), 619.CrossRefGoogle Scholar
Sinai, Y., Markov partitions and C-diffeomorphisms, Funct. Anal. Appl. 2(1) (1968), 6182.CrossRefGoogle Scholar
Sinai, Y. G., Gibbs measures in ergodic theory, Russ. Math. Surv. 27(4) (1972), 2169.CrossRefGoogle Scholar
Spatzier, R. and Vischer, D., Equilibrium measures for certain isometric extensions of Anosov systems, Ergod. Theor. Dyn. Syst. 38(3) (2016), 11541167.CrossRefGoogle Scholar
Walters, P., A variational principle for the pressure of continuous transformations, Am. J. Math. 97(4) (1975), 937.CrossRefGoogle Scholar