Skip to main content

Advertisement

Log in

The Effects of Aging Process After Solution Heat Treatment on Drilling Machinability of Corrax Steel

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

As a maraging steel, Corrax, is used in many engineering applications in the manufacturing, aerospace, and medical industries thanks to its properties such as high strength, hardness and corrosion resistance. However, these high specifications can cause some issues for manufacturing operations such as forging, machining, grinding. In addition to that, using heat treatment applications changes materials' mechanical specifications, affecting the material's behavior during machining. Therefore, it is important to characterize the influences of different heat treatment conditions on the material's property and behavior. In this study, the effects of heat treatment process on the mechanical properties, drilling machinability and corrosion resistance of Corrax steel were experimentally investigated with the samples of solution heat treated and aged at 400 °C, 525 °C, 600 °C, and 700 °C. The machinability was evaluated based on thrust force, chip morphology, hole quality, and tool wear. The results showed that the thrust force, torque and hole quality depend on feed rate, cutting speed, and mechanical properties affected by aging treatment. The highest hardness (47.4 HRC), ultimate tensile strength (1720 MPa), maximum elongation (33%), and toughness (198 jm-3) were obtained for the sample which aged at 525 °C for four hours, consequently the highest cutting force and surface roughness results were measured for this sample. Better hole surface quality and less burr formation were observed in the samples aged at 600 °C and 700 °C, and not-aged. On the other hand, while the highest value of corrosion potential were measured in the sample aged at 400 °C, the lowest corrosion potential value were measured in the sample aged at 700 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Felli F, Brotzu A, Vendittozzi C, Paolozzi A, Passeggio F (2013) Wear surface damage of a Stainless Steel EN 3358 aeronautical component subjected to sliding. Frattura ed Integrità Strutturale 7(23):127–135

    Article  Google Scholar 

  2. Schnitzer R, Radis R, Nöhrer M, Schober M, Hochfellner R, Zinner S et al (2010) Reverted austenite in PH 13-8 Mo maraging steels. Mater Chem Phys 122(1):138–145

    Article  CAS  Google Scholar 

  3. Raabe D, Ponge D, Dmitrieva O, Sander B (2009) Designing ultrahigh strength steels with good ductility by combining transformation induced plasticity and martensite aging. Adv Eng Mater 11(7):547–555

    Article  CAS  Google Scholar 

  4. Turnier Trottier W, Kreitcberg A, Brailovski V (2021) Structure and mechanical properties of laser powder bed-fused and wrought ph13-8mo-type precipitation hardening stainless steels: Comparative study. J Manufact Mater Process 5(3):67

    CAS  Google Scholar 

  5. Höring S, Abou-Ras D, Wanderka N, Leitner H, Clemens H, Banhart J (2009) Characterization of reverted austenite during prolonged ageing of maraging steel CORRAX. Steel Res Int 80(1):84–88

    Google Scholar 

  6. Zheng C, Schoell R, Hosemann P, Kaoumi D (2019) Ion irradiation effects on commercial PH 13-8 Mo maraging steel Corrax. J Nuclear Mater 514:255–265

    Article  CAS  ADS  Google Scholar 

  7. Sha W, Leitner H, Guo Z, Xu W (2012) Phase transformations in maraging steels. Phase transformations in steels. Elsevier. pp 332-62

  8. Schnitzer R, Zickler GA, Lach E, Clemens H, Zinner S, Lippmann T et al (2010) Influence of reverted austenite on static and dynamic mechanical properties of a PH 13-8 Mo maraging steel. Mater Sci Eng A 527(7-8):2065–2070

    Article  Google Scholar 

  9. Huang Z, Abad M, Ramsey J, de Figueiredo MR, Kaoumi D, Li N et al (2016) A high temperature mechanical study on PH 13-8 Mo maraging steel. Mater Sci Eng: A 651:574–582

    Article  CAS  Google Scholar 

  10. Guldibi AS, Demir H (2020) Aging Effect on Microstructure and Machinability of Corrax Steel. Eng Technol Appl Sci Res 10(1):5168–5174

    Article  Google Scholar 

  11. Wiessner M, Gamsjäger E, van der Zwaag S, Angerer P (2017) Effect of reverted austenite on tensile and impact strength in a martensitic stainless steel− An in-situ X-ray diffraction study. Mater Sci Eng: A 682:117–125

    Article  CAS  Google Scholar 

  12. Song Y, Ping D, Yin F, Li X, Li Y (2010) Microstructural evolution and low temperature impact toughness of a Fe–13% Cr–4% Ni–Mo martensitic stainless steel. Mater Sci Eng: A 527(3):614–618

    Article  Google Scholar 

  13. Niu M, Yang K, Luan J, Wang W, Jiao Z (2022) Cu-assisted austenite reversion and enhanced TRIP effect in maraging stainless steels. J Mater Sci Technol 104:52–58

    Article  CAS  Google Scholar 

  14. Viswanathan U, Dey G, Sethumadhavan V (2005) Effects of austenite reversion during overageing on the mechanical properties of 18 Ni (350) maraging steel. Mater Sci Eng: A 398(1-2):367–372

    Article  Google Scholar 

  15. Nakagawa H, Miyazaki T (1999) Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel. J Mater Sci 34(16):3901–3908

    Article  CAS  ADS  Google Scholar 

  16. Bhambroo R, Roychowdhury S, Kain V, Raja V (2013) Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel. Mater Sci Eng: A 568:127–133

    Article  CAS  Google Scholar 

  17. Pampillo CA, Paxton HW (1972) The effect of reverted austenite on the mechanical properties and toughness of 12 Ni and 18 Ni (200) maraging steels. Metallurgical Mater Trans B 3(11):2895–2903

    Article  CAS  ADS  Google Scholar 

  18. da Silva LC, da Mota PR, da Silva MB, Ezugwu EO, Machado ÁR (2015) Study of burr behavior in face milling of PH 13-8 Mo stainless steel. CIRP J Manufact Sci Technol 8:34–42

    Article  Google Scholar 

  19. da Silva LC, da Mota PR, da Silva MB, Ezugwu EO, Machado AR (2015) Study of burr height in face milling of PH 13-8 Mo stainless steel––Transition from primary to secondary burr and benefits of deburring between passes. CIRP J Manufact Sci Technol 10:61–67

    Article  Google Scholar 

  20. da Silva LC, da Mota PR, da Silva MB, Sales WF, Machado ÁR, Jackson MJ (2016) Burr height minimization using the response surface methodology in milling of PH 13-8 Mo stainless steel. Int J Adv Manufact Technol 87(9):3485–3496

    Article  Google Scholar 

  21. Öndin O, Kıvak T, Sarıkaya M, Yıldırım ÇV (2020) Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel. Tribol Int 148:106323

    Article  Google Scholar 

  22. Cao X-F, Woo W-S, Lee C-M (2020) A study on the laser-assisted milling of 13-8 stainless steel for optimal machining. Optics Laser Technol 132:106473

    Article  CAS  Google Scholar 

  23. Güldibi AS (2020) Effect of aging process on machinability of corrax steel and modelling of cutting forces. Manufacturing Engineering: Karabük University. p 151

  24. El-Gallab MS, Sklad MP (2004) Machining of aluminum/silicon carbide particulate metal matrix composites: Part IV. Residual stresses in the machined workpiece. J Mater Process Technol 152(1):23–34

    Article  CAS  Google Scholar 

  25. Li X, Seah W (2001) Tool wear acceleration in relation to workpiece reinforcement percentage in cutting of metal matrix composites. Wear 247(2):161–171

    Article  CAS  Google Scholar 

  26. Ozben T, Kilickap E, Cakır O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol 198(1-3):220–225

    Article  CAS  Google Scholar 

  27. Ghelloudj O, Gharbi A, Zelmati D, Bouhamla K, Ramoul CE, Berdjane D (2021) Effect of Heat Treatment on the Structure, Wear and Corrosion of AISI L6 Tool Steel. Defect and Diffusion Forum: Trans Tech Publ. p 448-56

  28. Li X, Zhang J, Chen J, Shen S, Yang G, Wang T et al (2016) Effect of aging treatment on hydrogen embrittlement of PH 13-8 Mo martensite stainless steel. Mater Sci Eng: A 651:474–485

    Article  CAS  Google Scholar 

  29. Leem D-S, Lee Y-D, Jun J-H, Choi C-S (2001) Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe–13% Cr–7% Ni–3% Si martensitic stainless steel. Scripta Materialia 45(7):767–772

    Article  CAS  Google Scholar 

  30. Joseph MJ, Jabbar MA (2019) Effect of aging process on the microstructure, corrosion resistance and mechanical properties of stainless steel AISI 204. Case Stud Construct Mater 11:e00253

    Article  Google Scholar 

  31. Fu S, Liu P, Chen X, Zhou H, Ma F, Li W et al (2021) Effect of aging process on the microstructure and properties of Cu–Cr–Ti alloy. Mater Sci Eng: A 802:140598

    Article  CAS  Google Scholar 

  32. Yu R, Chen Q, Wang P, Zhang D, Li J, Zhang M (2021) Effects of Solution Temperature and Aging Time on the Microstructure and Mechanical Properties of TG6 Titanium Alloy. J Mater Eng Performance 1-9

  33. Su J-h, Dong Q-m, Liu P, Li H-j, Kang B-x (2005) Research on aging precipitation in a Cu–Cr–Zr–Mg alloy. Mater Sci Eng: A 392(1-2):422–426

    Article  Google Scholar 

  34. Hochanadel P, Edwards G, Robino C, Cieslak M (1994) Heat treatment of investment cast PH 13-8 Mo stainless steel: Part I. Mechanical properties and microstructure. Metallurg Mater Trans A 25(4):789–798

    Article  ADS  Google Scholar 

  35. Seetharaman V, Sundararaman M, Krishnan R (1981) Precipitation hardening in a PH 13-8 Mo stainless steel. Mater Sci Eng 47(1):1–11

    Article  CAS  Google Scholar 

  36. Heo N (1996) Ductile-brittle-ductile transition and grain boundary segregation of Mn and Ni in an Fe-6Mn-12Ni alloy. Scripta Materialia 34(10):1517–1522

    Article  CAS  Google Scholar 

  37. Hillel G, Meshi L, Kalabukhov S, Frage N, Zaretsky E (2020) Shock wave characterization of precipitate strengthening of PH 13–8 Mo stainless steel. Acta Materialia 187:176–185

    Article  CAS  ADS  Google Scholar 

  38. Galindo-Nava E, Rainforth W, Rivera-Díaz-del-Castillo P (2016) Predicting microstructure and strength of maraging steels: elemental optimisation. Acta Materialia 117:270–285

    Article  CAS  ADS  Google Scholar 

  39. Ping D, Ohnuma M, Hirakawa Y, Kadoya Y, Hono K (2005) Microstructural evolution in 13Cr–8Ni–2.5 Mo–2Al martensitic precipitation-hardened stainless steel. Mater Sci Eng: A 394(1-2):285–295

    Article  Google Scholar 

  40. Taillard R, Pineau A (1982) Room temperature tensile properties of Fe-19wt.% Cr alloys precipitation hardened by the intermetallic compound NiAl. Mater Sci Eng 56(3):219–231

    Article  CAS  Google Scholar 

  41. Pardal J, Tavares S, Terra V, Da Silva M, Dos Santos D (2005) Modeling of precipitation hardening during the aging and overaging of 18Ni–Co–Mo–Ti maraging 300 steel. J Alloys Compounds 393(1-2):109–113

    Article  CAS  Google Scholar 

  42. Hossain A, Kurny A (2013) Effect of ageing temperature on the mechanical properties of Al-6Si-0.5 Mg cast alloys with Cu additions treated by T6 heat treatment. Universal. J Mater Sci 1(1):1–5

    Google Scholar 

  43. EL-Bedawy MEM (2010) Effect of aging on the corrosion of aluminum alloy 6061

  44. Rao AU, Vasu V, Govindaraju M, Srinadh KS (2016) Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review. Trans Nonferrous Metals Soc China 26(6):1447–1471

    Article  CAS  Google Scholar 

  45. Vargel C (2020) Corrosion of aluminium. Elsevier

  46. Koklu U, Kayhanlar H (2022) An experimental investigation on machinability of AZ31B magnesium alloy under dry and dipped cryogenic approaches. J Mater Eng Performance. 1-12

  47. Morkavuk S, Köklü U, Aslantaş K (2023) An experimental comprehensive analysis of drilling carbon fiber reinforced plastic tubes and comparison with carbon fiber reinforced plastic plate. J Reinforced Plastics Compos 42(7-8):323–345

    Article  CAS  Google Scholar 

  48. Köklü U, Demir O, Avcı A, Etyemez A (2017) Drilling performance of functionally graded composite: Comparison with glass and carbon/epoxy composites. J Mech Sci Technol 31:4703–4709

    Article  Google Scholar 

  49. Köklü U, Koçar O, Morkavuk S, Giasin K, Ayer Ö (2022) Influence of extrusion parameters on drilling machinability of AZ31 magnesium alloy. Proc Institution Mech Engineers Part E: J Process Mech Eng 236(5):2082–2094

    Article  Google Scholar 

  50. Ekici E, Motorcu AR, Uzun G (2017) An investigation of the effects of cutting parameters and graphite reinforcement on quality characteristics during the drilling of Al/10B4C composites. Measurement 95:395–404

    Article  ADS  Google Scholar 

  51. Ergen S Mechanical and Microstructural Properties of Ti-V-Al High Temperature Shape Memory Alloy. Avrupa Bilim ve Teknoloji Dergisi 26:270–275

  52. Sato M, Aoki T, Tanaka H, Takeda S (2013) Variation of temperature at the bottom surface of a hole during drilling and its effect on tool wear. Int J Machine Tools Manufact 68:40–47

    Article  Google Scholar 

  53. Rana R, Rajput K, Saini R, Lal R (2014) Optimization of tool wear: a review. Int J Mod Eng Res 4(11):35–42

    Google Scholar 

  54. Vasu V, Reddy PK, G. (2011) Effect of minimum quantity lubrication with Al2O3 nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy. Proc Institution Mech Eng Part N: J Nanoeng Nanosyst 225(1):3–16

    CAS  Google Scholar 

  55. Nedić BP, Erić MD (2014) Cutting temperature measurement and material machinability. Thermal Sci 18(suppl. 1):259–268

    Article  Google Scholar 

  56. Khan SA, Shamail S, Anwar S, Hussain A, Ahmad S, Saleh M (2020) Wear performance of surface treated drills in high speed drilling of AISI 304 stainless steel. J Manufact Process 58:223–235

    Article  Google Scholar 

  57. Arun M, Arunkumar N, Vijayaraj R, Ramesh B (2018) Investigation on the performance of deep and shallow cryogenic treated tungsten carbide drills in austenitic stainless steel. Measurement 125:687–693

    Article  ADS  Google Scholar 

  58. Mamedov A, Layegh KSE, Lazoglu I (2015) Instantaneous tool deflection model for micro milling. Int J Adv Manufact Technol 79(5):769–777

    Article  Google Scholar 

  59. Chen SH, Gao M-sM-s (2021) A Study of the Effect of Fusion of Multi-Sensor and Cutting Chip Color on the Lifetime of Cutting Tool Coated with TiAlN

  60. Ning Y, Rahman M, Wong Y (2001) Investigation of chip formation in high speed end milling. J Mater Process Technol 113(1-3):360–367

    Article  CAS  Google Scholar 

  61. Bakkal M, Shih AJ, McSpadden SB, Liu C, Scattergood RO (2005) Light emission, chip morphology, and burr formation in drilling the bulk metallic glass. Int J Machine Tools Manufact 45(7-8):741–752

    Article  Google Scholar 

  62. Batzer S, Haan D, Rao P, Olson W, Sutherland J (1998) Chip morphology and hole surface texture in the drilling of cast aluminum alloys. J Mater Process Technol 79(1-3):72–78

    Article  Google Scholar 

  63. Hoseiny H, Högman B, Andrén H-O, Klement U, Ståhl J-E, Thuvander A (2013) The influence of microstructure and mechanical properties on the machinability of martensitic and bainitic prehardened mould steels. Int J Mater Res 104(8):748–761

    Article  CAS  Google Scholar 

  64. Network TI (n.d.) Austenite Martensite Bainite Pearlite and Ferrite structures

  65. Hosseini S, Beno T, Klement U, Kaminski J, Ryttberg K (2014) Cutting temperatures during hard turning—Measurements and effects on white layer formation in AISI 52100. J Mater Process Technol 214(6):1293–1300

    Article  CAS  Google Scholar 

  66. Haddad F, Lescalier C, Desaigues J-E, Bomont-Arzur A, Bomont O (2019) Metallurgical Analysis of Chip Forming Process when Machining High Strength Bainitic Steels. J Manufact Mater Process 3(1):10

    CAS  Google Scholar 

  67. Koklu U, Morkavuk S, Urtekin L (2019) Effects of the drill flute number on drilling of a casted AZ91 magnesium alloy. Mater Test 61(3):260–266. https://doi.org/10.3139/120.111315

    Article  CAS  ADS  Google Scholar 

  68. Sunil BR, Ganesh KV, Pavan P, Vadapalli G, Swarnalatha C, Swapna P et al (2016) Effect of aluminum content on machining characteristics of AZ31 and AZ91 magnesium alloys during drilling. J Magnesium Alloys 4(1):15–21. https://doi.org/10.1016/j.jma.2015.10.003

    Article  CAS  Google Scholar 

  69. Sadiq TO, Hameed BA, Idris J, Olaoye O, Nursyaza S, Samsudin ZH et al (2019) Effect of different machining parameters on surface roughness of aluminium alloys based on Si and Mg content. J Brazilian Soc Mech Sci Eng 41(10):1–11

    Article  Google Scholar 

  70. Vasu C, Andhare AB, Dumpala R (2021) Multiobjective optimization of performance characteristics in turning of AZ91 Mg alloy using grey relational analysis. Mater Today: Proc 42:642–649

    CAS  Google Scholar 

  71. Zhang C, Choi H (2021) Study of segmented chip formation in cutting of high-strength lightweight alloys. Int J Adv Manufact Technol 112(9):2683–2703

    Article  Google Scholar 

  72. Komanduri R, Brown R (1981) On the mechanics of chip segmentation in machining

  73. Yavuz M, Gökçe H, Şeker U (2017) Investigation of the effect of drill geometry on tool wear and chip formation. Gazi J Eng Sci 3(1):11–19

    Google Scholar 

  74. Koklu U, Çoban H (2020) Effect of dipped cryogenic approach on thrust force, temperature, tool wear and chip formation in drilling of AZ31 magnesium alloy. J Mater Res Technol 9(3):2870–2880

    Article  CAS  Google Scholar 

  75. Tayisepi N (n.d.) Characterisation of Energy Efficiency Affecting Machining Response Parameters with Cutting Conditions during the Turning Operations of Ti-Alloy Ti6Al4V

  76. Alliche M, Djebara A, Zedan Y, Songmene V (2021) Machinability of A356 cast alloys under the effect of artificial aging treatment and lubrication modes. JMST Advances:1-15

  77. Gökçe H. (2021) Modelling and Optimization for Thrust Force, Temperature and Burr Height in Drilling of Custom 450. Exp Tech:1-15

  78. Gaitonde V, Karnik S, Achyutha B, Siddeswarappa B (2008) Taguchi optimization in drilling of AISI 316L stainless steel to minimize burr size using multi-performance objective based on membership function. J Mater Process Technol 202(1-3):374–379

    Article  CAS  Google Scholar 

  79. Akkuş H, Yaka H (2021) Optimization of Cutting Parameters in Turning of Titanium Alloy (Grade 5) by Analysing Surface Roughness, Tool Wear and Energy Consumption. Exp Tech:1-12

  80. Barış Ö, Akgün M, Demir H (2019) Analysis and Optimization of Effects on Surface Roughness of Cutting Parameters on Turning of AA6061 Alloy. Gazi J Eng Sci 5(2):151–158

    Google Scholar 

  81. Erden MA, Yaşar N, Korkmaz ME, Ayvacı B, Nimel Sworna Ross K, Mia M (2021) Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method. Int J Adv Manufact Technol 114(9):2811–2827

    Article  Google Scholar 

  82. Kivak T, Habali K, ŞEKER U. (2012) The effect of cutting paramaters on the hole quality and tool wear during the drilling of Inconel 718. Gazi Univ J Sci 25(2):533–540

    Google Scholar 

  83. Schreiber E (1976) Härterisse und Schleifrisse—Ursachen und Auswirkungen von Eigenspannungen (2 Teil). Zeitschrift für wirtschaftlichen Fabrikbetrieb 71(12):565–570

    Article  Google Scholar 

  84. Ramaswami R (1971) The effect of the built-up-edge (BUE) on the wear of cutting tools. Wear 18(1):1–10

    Article  Google Scholar 

  85. Handoko W, Pahlevani F, Sahajwalla V (2018) Enhancing corrosion resistance and hardness properties of carbon steel through modification of microstructure. Materials 11(12):2404

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  86. Candelaria A, Pinedo C (2003) Influence of the heat treatment on the corrosion resistance of the martensitic stainless steel type AISI 420. J Mater Sci Lett 22(16):1151–1153

    Article  CAS  Google Scholar 

  87. Abbasi-Khazaei B, Mollaahmadi A (2017) Rapid tempering of martensitic stainless steel AISI420: microstructure, mechanical and corrosion properties. J Mater Eng Perform 26(4):1626–1633

    Article  CAS  Google Scholar 

  88. Greeff M, Toit M (2006) Looking at the sensitization of 11-12% chromium EN 1.4003 stainless steels during welding. Welding J-New York 85(11):243

    Google Scholar 

  89. Bilmes P, Llorente C, Méndez C, Gervasi C (2009) Microstructure, heat treatment and pitting corrosion of 13CrNiMo plate and weld metals. Corrosion Sci 51(4):876–881

    Article  CAS  Google Scholar 

  90. Bignozzi M, Calcinelli L, Carati M, Ceschini L, Chiavari C, Masi G et al (2020) Effect of heat treatment conditions on retained austenite and corrosion resistance of the X190CrVMo20-4-1 stainless steel. Metals Mater Int 26(9):1318–1328

    Article  CAS  Google Scholar 

  91. Morito S, Adachi Y, Ohba T (2009) Morphology and crystallography of sub-blocks in ultra-low carbon lath martensite steel. Mater Trans 50(8):1919–1923

    Article  CAS  Google Scholar 

  92. Morito S, Yoshida H, Maki T, Huang X (2006) Effect of block size on the strength of lath martensite in low carbon steels. Mater Sci Eng: A 438:237–240

    Article  Google Scholar 

  93. Kinney C, Pytlewski K, Khachaturyan A, Morris J Jr (2014) The microstructure of lath martensite in quenched 9Ni steel. Acta Materialia 69:372–385

    Article  CAS  ADS  Google Scholar 

  94. Sherby OD, Wadsworth J, Lesuer DR, Syn CK (2008) Revisiting the structure of martensite in iron-carbon steels. Mater Trans 49(9):2016–2027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Köklü.

Ethics declarations

Conflict of Interest

The authors states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The influences of aging process on mechanical properties, drilling machinability, and corrosion behavior of corrax steel are presented considering thrust force, tool wear, chip formation, and hole quality.

• The aging process significantly effects mechanical properties and drilling machinability due to precipitation formation in the microstructure. On the other hand, overaging significantly vary drilling machinability behavior as it reduces mechanical properties.

• Corrosion resistance shifts depending on aging temperatures due to microstructure change.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güldibi, A., Köklü, U., Koçar, O. et al. The Effects of Aging Process After Solution Heat Treatment on Drilling Machinability of Corrax Steel. Exp Tech 48, 239–257 (2024). https://doi.org/10.1007/s40799-023-00656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-023-00656-y

Keywords

Navigation