Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Recent Progress for the Synthesis of Pyrrole Derivatives – An Update

Author(s): Dharti Patel, Drashti Shah, Krishi Patel, Ayush Patel, Tushar Bambharoliya, Anjali Mahavar and Ashish Patel*

Volume 21, Issue 7, 2024

Published on: 26 June, 2023

Page: [717 - 741] Pages: 25

DOI: 10.2174/1570193X20666230530161009

Price: $65

Abstract

Pyrrole is a versatile heterocyclic moiety exhibiting a wide range of pharmacological actions with high therapeutic value. The importance of pyrrole in the pharmaceutical field lies in its versatility, selectivity, and biocompatibility, and these properties make it a valuable tool for drug design and development. The pyrrole moiety is a fundamental building block for many biologically active molecules and has gathered significant attention in the fields of medicinal and organic chemistry; hence, its synthesis has been a crucial area for research. There are various conventional as well as modern approaches to acquiring a series of pyrrole scaffolds, with a wide range of attractive features and drawbacks pertaining to each approach. An extensive amount of literature must be studied to compare the best synthetic routes. This article highlights the applications of pyrrole derivatives in various fields, such as drug discovery, material science, and catalysis, and provides an overview of modern synthetic pathways that include metals, nanomaterials, and complex heterogeneous catalysed methods for pyrrole derivatives. Special emphasis is given to the use of green chemistry principles like green solvent-based methods, microwave-aided methods, and solvent-free methods in the synthesis of pyrroles, with the recent developments and prospects in the synthetic and organic chemistry fields. Overall, this review article provides a comprehensive overview of the synthesis of pyrroles and complies with all the possible developments in the synthetic routes for pyrroles within 2015– 2022. Among all, the reactions catalysed by proline, copper oxides, and oxones have been shown to be the most effective synthetic route for pyrrole derivatives at mild reaction conditions and with excellent yields. This information will be helpful for researchers interested in the development of new pyrrole-based compounds. The categorization in this review provides an easy means for the reader to rationally select the best possible synthetic method for pyrrole derivatives.

Keywords: Pyrrole, green chemistry, heterocycle, amines, synthetic method, β-dicarbonyl.

Graphical Abstract
[1]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 3839-3842.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[2]
Li, J.J. Heterocyclic Chemistry in Drug Discovery, 1st ed; Wiley & Sons: New York, 2013.
[3]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909-1951.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[4]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[6]
Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Advances, 2015, 5(20), 15233-15266.
[http://dx.doi.org/10.1039/C4RA15710A]
[7]
Bayat, M.; Nasri, S.; Notash, B. Synthesis of new 3-cyanoacetamide pyrrole and 3-acetonitrile pyrrole derivatives. Tetrahedron, 2017, 73(11), 1522-1527.
[http://dx.doi.org/10.1016/j.tet.2017.02.005]
[8]
Kibriz, İ.E.; Saçmaci, M.; Şahin, E.; Yildirim, İ. Preparation of novel pyrrol-2-one derivatives via an effective synthesis of new oxazole scaffold. Tetrahedron, 2017, 73(14), 1795-1802.
[http://dx.doi.org/10.1016/j.tet.2017.01.046]
[9]
Patel, A.; Shah, H.; Shah, U.; Bambharoliya, T.; Patel, M.; Panchal, I.; Parikh, V.; Nagani, A.; Patel, H.; Vaghasiya, J.; Solanki, N.; Patel, S.; Shah, A.; Parmar, G. A review on the synthetic approach of marinopyrroles: A natural antitumor agent from the ocean. Lett. Org. Chem., 2021, 18(4), 251-264.
[http://dx.doi.org/10.2174/1570178617999200718004012]
[10]
Ram; Kaur, E.; Rani, V.; Abbot, V.; Kapoor, Y.; Konar, D.; Kumar, K. Recent synthetic and medicinal perspectives of pyrroles: An overview. J Pharm Chem Chem Sci., 2017, 1(1), 17-32.
[11]
Bavadi, M.; Niknam, K.; Shahraki, O. Novel pyrrole derivatives bearing sulfonamide groups: Synthesis in vitro cytotoxicity evaluation, molecular docking and DFT study. J. Mol. Struct., 2017, 1146, 242-253.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.003]
[12]
Williams, I.S.; Joshi, P.; Gatchie, L.; Sharma, M.; Satti, N.K.; Vishwakarma, R.A.; Chaudhuri, B.; Bharate, S.B. Synthesis and biological evaluation of pyrrole-based chalcones as CYP1 enzyme inhibitors, for possible prevention of cancer and overcoming cisplatin resistance. Bioorg. Med. Chem. Lett., 2017, 27(16), 3683-3687.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.010] [PMID: 28711350 ]
[13]
Jung, E.K.; Leung, E.; Barker, D. Synthesis and biological activity of pyrrole analogues of combretastatin A-4. Bioorg. Med. Chem. Lett., 2016, 26(13), 3001-3005.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.026] [PMID: 27212068]
[14]
Kang, S.Y.; Park, E.J.; Park, W.K.; Kim, H.J.; Jeong, D.; Jung, M.E.; Song, K.S.; Lee, S.H.; Seo, H.J.; Kim, M.J.; Lee, M.; Han, H.K.; Son, E.J.; Pae, A.N.; Kim, J.; Lee, J. Arylpiperazine-containing pyrrole 3-carboxamide derivatives targeting serotonin 5-HT2A, 5-HT2C, and the serotonin transporter as a potential antidepressant. Bioorg. Med. Chem. Lett., 2010, 20(5), 1705-1711.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.093] [PMID: 20149649]
[15]
Paprocka, R.; Pazderski, L.; Mazur, L.; Wiese-Szadkowska, M.; Kutkowska, J.; Nowak, M.; Helmin-Basa, A. Synthesis and structural study of amidrazone derived pyrrole-2,5-Dione derivatives: Potential anti-inflammatory agents. Molecules, 2022, 27(9), 2891-2909.
[http://dx.doi.org/10.3390/molecules27092891] [PMID: 35566243]
[16]
Xu, X.T.; Mou, X.Q.; Xi, Q.M.; Liu, W.T.; Liu, W.F.; Sheng, Z.J.; Zheng, X.; Zhang, K.; Du, Z.Y.; Zhao, S.Q.; Wang, S.H. Anti-inflammatory activity effect of 2-substituted-1,4,5,6-tetrahydrocyclopenta[b]pyrrole on TPA-induced skin inflammation in mice. Bioorg. Med. Chem. Lett., 2016, 26(21), 5334-5339.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.034] [PMID: 27680589]
[17]
Kim, K.J.; Choi, M.J.; Shin, J.S.; Kim, M.; Choi, H.E.; Kang, S.M.; Jin, J.H.; Lee, K.T.; Lee, J.Y. Synthesis, biological evaluation, and docking analysis of a novel family of 1-methyl-1H-pyrrole-2,5-diones as highly potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(8), 1958-1962.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.074] [PMID: 24656662]
[18]
Ji, X.; Su, M.; Wang, J.; Deng, G.; Deng, S.; Li, Z.; Tang, C.; Li, J.; Li, J.; Zhao, L.; Jiang, H.; Liu, H. Design, synthesis and biological evaluation of hetero-aromatic moieties substituted pyrrole-2-carbonitrile derivatives as dipeptidyl peptidase IV inhibitors. Eur. J. Med. Chem., 2014, 75, 111-122.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.021] [PMID: 24531224]
[19]
Mohammad, B.D.; Baig, M.S.; Bhandari, N.; Siddiqui, F.A.; Khan, S.L.; Ahmad, Z.; Khan, F.S.; Tagde, P.; Jeandet, P. Heterocyclic compounds as dipeptidyl peptidase-IV inhibitors with special emphasis on oxadiazoles as potent anti-diabetic agents. Molecules, 2022, 27(18), 6001-6018.
[http://dx.doi.org/10.3390/molecules27186001] [PMID: 36144735]
[20]
Ambhore, J.P.; Laddha, P.R.; Nandedkar, A.; Ajmire, P.V.; Chumbhale, D.S.; Navghare, A.B.; Kuchake, V.G.; Chaudhari, P.J.; Adhao, V.S. Medicinal chemistry of non-peptidomimetic dipeptidyl peptidase IV (DPP IV) inhibitors for treatment of Type-2 diabetes mellitus: Insights on recent development. J. Mol. Struct., 2023, 1284, 135249.
[http://dx.doi.org/10.1016/j.molstruc.2023.135249]
[21]
He, X.Y.; Zou, P.; Qiu, J.; Hou, L.; Jiang, S.; Liu, S.; Xie, L. Design, synthesis and biological evaluation of 3-substituted 2,5-dimethyl-N-(3-(1H-tetrazol-5-yl)phenyl)pyrroles as novel potential HIV-1 gp41 inhibitors. Bioorg. Med. Chem., 2011, 19(22), 6726-6734.
[http://dx.doi.org/10.1016/j.bmc.2011.09.047] [PMID: 22014749]
[22]
Mohi-ud-din, R; Pottoo, F.H; Mir, R.H; Mir, P.A; Sabreen, S.; Maqbool, M; Shah, A.J; Shenmar, K; Raza, S.N. A comprehensive review on journey of pyrrole scaffold against multiple therapeutic targets. Anticancer. Agents Med. Chem., 2022, 22(19), 3291-3303.
[http://dx.doi.org/10.2174/1871520622666220613140607] [PMID: 35702764]
[23]
Bhosale, J.D.; Shirolkar, A.R.; Pete, U.D.; Zade, C.M.; Mahajan, D.P.; Hadole, C.D.; Pawar, S.D.; Patil, U.D.; Dabur, R.; Bendre, R.S. Synthesis, characterization and biological activities of novel substituted formazans of 3,4-dimethyl-1H-pyrrole-2-carbohydrazide derivatives. J. Pharm. Res., 2013, 7(7), 582-587.
[http://dx.doi.org/10.1016/j.jopr.2013.07.022]
[24]
Elsayed, A.M.; El-Remaily, M.A.E.A.A.A.; Salama, K.S.M.; Abdelhamid, A.A. Utility of pyrrole‐2‐thioacetohydrazide in synthesis of new heterocyclic compounds with promising antimicrobial activities and molecular docking studies. J. Heterocycl. Chem., 2022, 59(3), 449-465.
[http://dx.doi.org/10.1002/jhet.4392]
[25]
Yadav, M.; Lal, K.; Kumar, A.; Singh, P.; Vishvakarma, V.K.; Chandra, R. Click reaction inspired synthesis, antimicrobial evaluation and in silico docking of some pyrrole-chalcone linked 1,2,3-triazole hybrids. J. Mol. Struct., 2023, 1273, 134321.
[http://dx.doi.org/10.1016/j.molstruc.2022.134321]
[26]
Semenya, D.; Touitou, M.; Masci, D.; Ribeiro, C.M.; Pavan, F.R.; Dos Santos, F.G.F.; Gianibbi, B.; Manetti, F.; Castagnolo, D. Tapping into the antitubercular potential of 2,5-dimethylpyrroles: A structure-activity relationship interrogation. Eur. J. Med. Chem., 2022, 237, 114404.
[http://dx.doi.org/10.1016/j.ejmech.2022.114404] [PMID: 35486992]
[27]
Prem Kumar, S.R.; Shaikh, I.A.; Mahnashi, M.H.; Alshahrani, M.A.; Dixit, S.R.; Kulkarni, V.H.; Lherbet, C.; Gadad, A.K.; Aminabhavi, T.M.; Joshi, S.D. Design, synthesis and computational approach to study novel pyrrole scaffolds as active inhibitors of enoyl ACP reductase (InhA) and Mycobacterium tuberculosis antagonists. J. Indian Chem. Soc., 2022, 99(11), 100674.
[http://dx.doi.org/10.1016/j.jics.2022.100674]
[28]
Rawat, P.; Singh, R.N.; Niranjan, P.; Ranjan, A.; Holguín, N.R.F. Evaluation of antituberculosis activity and DFT study on dipyrromethane-derived hydrazone derivatives. J. Mol. Struct., 2017, 1149, 539-548.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.008]
[29]
Yuan, X.; Lu, P.; Xue, X.; Qin, H.; Fan, C.; Wang, Y.; Zhang, Q. Discovery of 2-azetidinone and 1 H -pyrrole-2,5-dione derivatives containing sulfonamide group at the side chain as potential cholesterol absorption inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(3), 849-853.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.077] [PMID: 26783178]
[30]
Madrigal-Aguilar, D.A.; Gonzalez-Silva, A.; Rosales-Acosta, B.; Bautista-Crescencio, C.; Ortiz-Álvarez, J.; Escalante, C.H.; Sánchez-Navarrete, J.; Hernández-Rodríguez, C.; Chamorro-Cevallos, G.; Tamariz, J.; Villa-Tanaca, L. Antifungal activity of fibrate-based compounds and substituted pyrroles that inhibit the enzyme 3-Hydroxy-methyl-glutaryl-CoA Reductase of Candida glabrata (CgHMGR), thus decreasing yeast viability and ergosterol synthesis. Microbiol. Spectr., 2022, 10(2), e01642-e21.
[http://dx.doi.org/10.1128/spectrum.01642-21] [PMID: 35377226]
[31]
Kamel, M.S.; Belal, A.; Aboelez, M.O.; Shokr, E.K.; Abdel-Ghany, H.; Mansour, H.S.; Shawky, A.M.; El-Remaily, M.A.E.A.A.A. Microwave-assisted synthesis, biological activity evaluation, molecular docking, and ADMET studies of some novel pyrrolo [2,3-b] pyrrole derivatives. Molecules, 2022, 27(7), 2061-2083.
[http://dx.doi.org/10.3390/molecules27072061] [PMID: 35408463]
[32]
Zhang, S.G.; Liang, C.G.; Sun, Y.Q.; Teng, P.; Wang, J.Q.; Zhang, W.H. Design, synthesis and antifungal activities of novel pyrrole- and pyrazole-substituted coumarin derivatives. Mol. Divers., 2019, 23(4), 915-925.
[http://dx.doi.org/10.1007/s11030-019-09920-z] [PMID: 30694410]
[33]
Lakhrissi, Y.; Rbaa, M.; Tuzun, B.; Hichar, A.; Anouar, E.H.; Ounine, K.; Almalki, F.; Hadda, T.B.; Zarrouk, A.; Lakhrissi, B. Synthesis, structural confirmation, antibacterial properties and bio-informatics computational analyses of new pyrrole based on 8-hydroxyquinoline. J. Mol. Struct., 2022, 1259, 132683.
[http://dx.doi.org/10.1016/j.molstruc.2022.132683]
[34]
Kamel, M.S.; Aboelez, M.O.; Elnagar, M.R.; Shokr, E.K.; Selim, H.M.R.M.; Abdel-Ghany, H.E.; Drar, A.M.; Belal, A.; El Hamd, M.A.; Abd El Aleem Ali Ali El-Remaily, M. Green synthesis design, spectroscopic characterizations, and biological activities of novel pyrrole derivatives: An application to evaluate their toxic effect on cotton aphids. ChemistrySelect, 2022, 7(40), e202203191.
[http://dx.doi.org/10.1002/slct.202203191]
[35]
de Lócio, L.L.; do Nascimento, A.P.S.; Santos, M.B.; Gomes, J.N.S. de Medeiros e Silva, Y.M.S.; Albino, S.L.; dos Santos, V.L.; de Moura, R.O. Application of heterocycles as an alternative for the discovery of new anti-ulcer compounds: A mini-review. Curr. Pharm. Des., 2022, 28(17), 1373-1388.
[http://dx.doi.org/10.2174/1381612828666220512095559] [PMID: 35549862]
[36]
Tzankova, D.; Aluani, D.; Kondeva-Burdina, M.; Georgieva, M.; Vladimirova, S.; Peikova, L.; Tzankova, V. Antioxidant properties, neuroprotective effects and in vitro safety evaluation of new pyrrole derivatives. Pharm. Chem. J., 2022, 55(12), 1310-1319.
[http://dx.doi.org/10.1007/s11094-022-02577-3]
[37]
Akbaslar, D.; Giray, E.S.; Algul, O. Revisit to the synthesis of 1,2,3,4-tetrasubstituted pyrrole derivatives in lactic acid media as a green solvent and catalyst. Mol. Divers., 2021, 25(4), 2321-2338.
[http://dx.doi.org/10.1007/s11030-020-10122-1] [PMID: 32980995]
[38]
Amarnath, V.; Anthony, D.C.; Amarnath, K.; Valentine, W.M.; Wetterau, L.A.; Graham, D.G. Intermediates in the Paal-Knorr synthesis of pyrroles. J. Org. Chem., 1991, 56(24), 6924-6931.
[http://dx.doi.org/10.1021/jo00024a040]
[39]
Castro, A.J.; Giannini, D.D.; Greenlee, W.F. Synthesis of a 2,3′-bipyrrole. Denitrosation in the Knorr pyrrole synthesis. J. Org. Chem., 1970, 35(8), 2815-2816.
[http://dx.doi.org/10.1021/jo00833a080]
[40]
Ngwerume, S.; Lewis, W.; Camp, J.E. Development of a gold-multifaceted catalysis approach to the synthesis of highly substituted pyrroles: Mechanistic insights via Huisgen cycloaddition studies. J. Org. Chem., 2013, 78(3), 920-934.
[http://dx.doi.org/10.1021/jo302349k] [PMID: 23270303]
[41]
Roomi, M.W.; MacDonald, S.F. The Hantzsch pyrrole synthesis. Can. J. Chem., 1970, 48(11), 1689-1697.
[http://dx.doi.org/10.1139/v70-279]
[42]
Ge, J.; Ding, Q.; Wang, X.; Peng, Y. Three-component cascade synthesis of fully substituted trifluoromethyl pyrroles via a Cu(II)/Rh(III)-Promoted Aza-Michael Addition/trifluoromethylation cyclization/oxidation reaction. J. Org. Chem., 2020, 85(12), 7658-7665.
[http://dx.doi.org/10.1021/acs.joc.9b03470] [PMID: 32426980]
[43]
Milgram, B.C.; Eskildsen, K.; Richter, S.M.; Scheidt, W.R.; Scheidt, K.A. Microwave-assisted Piloty-Robinson synthesis of 3,4-disubstituted pyrroles. J. Org. Chem., 2007, 72(10), 3941-3944.
[http://dx.doi.org/10.1021/jo070389+] [PMID: 17432915]
[44]
McKinnon, D.M. The feist synthesis of pyrrole-3-carboxylic esters. Can. J. Chem., 1965, 43(9), 2628-2631.
[http://dx.doi.org/10.1139/v65-364]
[45]
Ma, Z.; Ma, Z.; Zhang, D. Synthesis of multi-substituted pyrrole derivatives through [3+2] cycloaddition with tosylmethyl isocyanides (TosMICs) and electron-deficient compounds. Molecules, 2018, 23(10), 2666-2685.
[http://dx.doi.org/10.3390/molecules23102666] [PMID: 30336556]
[46]
Daw, P.; Chakraborty, S.; Garg, J.A.; Ben-David, Y.; Milstein, D. Direct synthesis of pyrroles by dehydrogenative coupling of diols and amines catalyzed by cobalt pincer complexes. Angew. Chem. Int. Ed., 2016, 55(46), 14373-14377.
[http://dx.doi.org/10.1002/anie.201607742] [PMID: 27730747]
[47]
Cao, Z.; Zhu, H.; Meng, X.; Li, J.; Li, S.; Huang, Z.; Zhu, J.; Sun, X.; You, J. Synthesis of multisubstituted N -(tosylamino)pyrrole derivatives by AuCl 3 -catalyzed cycloisomerization of the β -alkynyl hydrazones. Synth. Commun., 2016, 46(17), 1417-1424.
[http://dx.doi.org/10.1080/00397911.2016.1205626]
[48]
Xu, X.M.; Lei, C.H.; Tong, S.; Zhu, J.; Wang, M.X. Lewis acid catalyst-steered divergent synthesis of functionalized vicinal amino alcohols and pyrroles from tertiary enamides. Org. Chem. Front., 2018, 5(21), 3138-3142.
[http://dx.doi.org/10.1039/C8QO00839F]
[49]
Lei, X.; Li, L.; He, Y.P.; Tang, Y. Rhodium(II)-catalyzed formal [3 + 2] cycloaddition of N -Sulfonyl-1,2,3-triazoles with isoxazoles: entry to polysubstituted 3-aminopyrroles. Org. Lett., 2015, 17(21), 5224-5227.
[http://dx.doi.org/10.1021/acs.orglett.5b02570] [PMID: 26467532]
[50]
Li, X.; Chen, M.; Xie, X.; Sun, N.; Li, S.; Liu, Y. Synthesis of multiple-substituted pyrroles via Gold(I)-catalyzed hydroamination/cyclization cascade. Org. Lett., 2015, 17(12), 2984-2987.
[http://dx.doi.org/10.1021/acs.orglett.5b01281] [PMID: 26030605]
[51]
Zhou, N.; Li, Z.; Xie, Z. Synthesis of α-enamino esters via Cu(II)-promoted dehydrogenation of α-amino acid esters: Application to the synthesis of polysubstituted pyrroles. Org. Chem. Front., 2015, 2(11), 1521-1530.
[http://dx.doi.org/10.1039/C5QO00182J]
[52]
Sakai, N.; Hori, H.; Ogiwara, Y. Copper(II)-Catalyzed [4+1] annulation of propargylamines with N, O -Acetals: Entry to the synthesis of polysubstituted pyrrole derivatives. Eur. J. Org. Chem., 2015, 2015(9), 1905-1909.
[http://dx.doi.org/10.1002/ejoc.201500098]
[53]
Siddiki, S.M.A.H.; Touchy, A.S.; Chaudhari, C.; Kon, K.; Toyao, T.; Shimizu, K. Synthesis of 2,5-disubstituted pyrroles via dehydrogenative condensation of secondary alcohols and 1,2-amino alcohols by supported platinum catalysts. Org. Chem. Front., 2016, 3(7), 846-851.
[http://dx.doi.org/10.1039/C6QO00165C]
[54]
Wu, J.; Chen, X.; Xie, Y.; Guo, Y.; Zhang, Q.; Deng, G.J. Carbazole and triarylpyrrole synthesis from anilines and cyclohexanones or acetophenones under transition-metal-free condition. J. Org. Chem., 2017, 82(11), 5743-5750.
[http://dx.doi.org/10.1021/acs.joc.7b00556] [PMID: 28474526]
[55]
Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Gold-catalyzed intermolecular nitrene transfer from 2H-azirines to ynamides: A direct approach to polysubstituted pyrroles. Org. Lett., 2015, 17(1), 30-33.
[http://dx.doi.org/10.1021/ol503172h] [PMID: 25514612]
[56]
Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. Polysubstituted 2-Aminopyrrole Synthesis via gold-catalyzed intermolecular nitrene transfer from vinyl azide to ynamide: reaction scope and mechanistic insights. J. Org. Chem., 2015, 80(22), 11407-11416.
[http://dx.doi.org/10.1021/acs.joc.5b02057] [PMID: 26503292]
[57]
Wu, X.; Zhao, P.; Geng, X.; Wang, C.; Wu, Y.; Wu, A. Synthesis of Pyrrole-2-carbaldehyde derivatives by oxidative annulation and direct C sp 3–H to C═O oxidation. Org. Lett., 2018, 20(3), 688-691.
[http://dx.doi.org/10.1021/acs.orglett.7b03821] [PMID: 29327934]
[58]
Kim, B.H.; Bae, S.; Go, A.; Lee, H.; Gong, C.; Lee, B.M. Synthesis of two distinct pyrrole moiety-containing arenes from nitroanilines using Paal–Knorr followed by an indium-mediated reaction. Org. Biomol. Chem., 2016, 14(1), 265-276.
[http://dx.doi.org/10.1039/C5OB02101D] [PMID: 26593044]
[59]
Kamal, A.; Faazil, S.; Shaheer Malik, M.; Balakrishna, M.; Bajee, S.; Siddiqui, M.R.H.; Alarifi, A. Convenient synthesis of substituted pyrroles via a cerium (IV) ammonium nitrate (CAN)-catalyzed Paal–Knorr reaction. Arab. J. Chem., 2016, 9(4), 542-549.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.009]
[60]
Karimi, S.; Ma, S.; Liu, Y.; Ramig, K.; Greer, E.M.; Kwon, K.; Berkowitz, W.F.; Subramaniam, G. Substituted pyrrole synthesis from nitrodienes. Tetrahedron Lett., 2017, 58(23), 2223-2227.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.077]
[61]
Zhao, M.N.; Zhang, Z.J.; Ren, Z.H.; Yang, D.S.; Guan, Z.H. Copper-catalyzed oxidative cyclization/1,2-amino migration cascade reaction. Org. Lett., 2018, 20(10), 3088-3091.
[http://dx.doi.org/10.1021/acs.orglett.8b01139] [PMID: 29722982]
[62]
Sha, Q.; Arman, H.; Doyle, M.P. Three-component cascade reactions with 2,3-Diketoesters: A novel metal-free synthesis of 5-vinyl-pyrrole and 4-hydroxy-indole derivatives. Org. Lett., 2015, 17(15), 3876-3879.
[http://dx.doi.org/10.1021/acs.orglett.5b01855] [PMID: 26185966]
[63]
Kalmode, H.P.; Vadagaonkar, K.S.; Murugan, K.; Prakash, S.; Chaskar, A.C. Deep eutectic solvent: A simple, environmentally benign reaction media for regioselective synthesis of 2,3,4-trisubstituted 1H-pyrroles. RSC Advances, 2015, 5(44), 35166-35174.
[http://dx.doi.org/10.1039/C5RA03270A]
[64]
Wang, Z.P.; He, Y.; Shao, P.L. Transition-metal-free synthesis of polysubstituted pyrrole derivatives via cyclization of methyl isocyanoacetate with aurone analogues. Org. Biomol. Chem., 2018, 16(30), 5422-5426.
[http://dx.doi.org/10.1039/C8OB01558A] [PMID: 30028468]
[65]
Qi, Z.; Jiang, Y.; Wang, Y.; Yan, R. tert -butyl nitrite promoted oxidative intermolecular sulfonamination of alkynes to synthesize substituted sulfonyl pyrroles from the alkynylamines and sulfinic acids. J. Org. Chem., 2018, 83(15), 8636-8644.
[http://dx.doi.org/10.1021/acs.joc.8b00741] [PMID: 29873495]
[66]
Keeley, A.; McCauley, S.; Evans, P. A ring closing metathesis-manganese dioxide oxidation sequence for the synthesis of substituted pyrroles. Tetrahedron, 2016, 72(20), 2552-2559.
[http://dx.doi.org/10.1016/j.tet.2016.03.088]
[67]
Kuruba, B.K.; Vasanthkumar, S.; Emmanuvel, L. Rhodium-catalyzed synthesis of 2,3 – Disubstituted N -methoxy pyrroles and furans via [3+2] cycloaddition between metal carbenoids and activated olefins. Tetrahedron, 2017, 73(22), 3093-3098.
[http://dx.doi.org/10.1016/j.tet.2017.04.007]
[68]
Chen, X.; Yang, M.; Zhou, M. Efficient synthesis of substituted pyrroles through Pd(OCOCF3)2-catalyzed reaction of 5-hexen-2-one with primary amines. Tetrahedron Lett., 2016, 57(47), 5215-5218.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.029]
[69]
Fleige, M. Glorius, F. α -Unsubstituted pyrroles by NHC-catalyzed threecomponent coupling: direct synthesis of a versatile atorvastatin derivative. Chemistry, 2017, 23(45), 10773-10776.
[http://dx.doi.org/10.1002/chem.201703008] [PMID: 28666059]
[70]
Emayavaramban, B.; Sen, M.; Sundararaju, B. Iron-catalyzed sustainable synthesis of pyrrole. Org. Lett., 2017, 19(1), 6-9.
[http://dx.doi.org/10.1021/acs.orglett.6b02819] [PMID: 27958754]
[71]
Adib, M.; Ayashi, N.; Heidari, F.; Mirzaei, P. Reaction between 4-nitro-1,3-diarylbutan-1-ones and ammonium acetate in the presence of morpholine and sulfur: An efficient synthesis of 2,4-diarylpyrroles. Synlett, 2016, 27(11), 1738-1742.
[http://dx.doi.org/10.1055/s-0035-1561852]
[72]
Yu, Y.; Mang, Z.; Yang, W.; Li, H.; Wang, W. Practical Pd(TFA)2-Catalyzed Aerobic [4+1] Annulation for the synthesis of pyrroles via “One-Pot” cascade reactions. Catalysts, 2016, 6(11), 169-180.
[http://dx.doi.org/10.3390/catal6110169]
[73]
Zheng, Y.; Wang, Y.; Zhou, Z. Organocatalytic multicomponent synthesis of polysubstituted pyrroles from 1,2-diones, aldehydes and arylamines. Chem. Commun., 2015, 51(93), 16652-16655.
[http://dx.doi.org/10.1039/C5CC05624A] [PMID: 26426410]
[74]
Shekarrao, K.; Kaishap, P.P.; Gogoi, S.; Boruah, R.C. Palladium-catalyzed one-pot sonogashira coupling, exo-dig Cyclization and hydride transfer reaction: Synthesis of pyridine-substituted pyrroles. Adv. Synth. Catal., 2015, 357(6), 1187-1192.
[http://dx.doi.org/10.1002/adsc.201401117]
[75]
Ramakrishnam, R.A.; Venkata, R.R.; Mallikarjuna, R.V.; Venkata, N.V.; Venkateswara, R.A.I. 2 –DMSO promoted metal free oxidative cyclization for the synthesis of substituted Indoles and pyrroles. Tetrahedron Lett., 2016, 57(26), 2838-2841.
[http://dx.doi.org/10.1016/j.tetlet.2016.05.025]
[76]
Qi, Z.; Jiang, Y.; Yuan, B.; Niu, Y.; Yan, R. Cu-catalyzed tandem aerobic oxidative cyclization for the synthesis of 3,3′-bipyrroles from the homopropargylic amines. Org. Lett., 2018, 20(16), 5048-5052.
[http://dx.doi.org/10.1021/acs.orglett.8b02201] [PMID: 30067037]
[77]
Donthiri, R.R.; Samanta, S.; Adimurthy, S.; Copper-Catalyzed, C. Copper-catalyzed C(sp 3)–H functionalization of ketones with vinyl azides: synthesis of substituted-1H-pyrroles. Org. Biomol. Chem., 2015, 13(40), 10113-10116.
[http://dx.doi.org/10.1039/C5OB01407G] [PMID: 26369270]
[78]
Mojikhalifeh, S.; Hasaninejad, A. Synthesis of 1,2,3,5-substituted pyrroles from α-bromoacetophenones and 2-nitroethene-1,1-diamines. Tetrahedron Lett., 2017, 58(26), 2574-2577.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.063]
[79]
Masoudi, M.; Anary-Abbasinejad, M. A direct phosphine-mediated synthesis of polyfunctionalized pyrroles from arylglyoxals and β-enaminones. Tetrahedron Lett., 2016, 57(1), 103-104.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.075]
[80]
He, X.L.; Zhao, H.R.; Song, X.; Jiang, B.; Du, W.; Chen, Y.C. Asymmetric barton–zard reaction to access 3-pyrrole-containing axially chiral skeletons. ACS Catal., 2019, 9(5), 4374-4381.
[http://dx.doi.org/10.1021/acscatal.9b00767]
[81]
Fu, L.; Liu, Y.; Wan, J.P.; Pd-Catalyzed Triple-Fold, C. Pd-Catalyzed triple-fold C(sp 2)–H activation with enaminones and alkenes for pyrrole synthesis via hydrogen evolution. Org. Lett., 2021, 23(11), 4363-4367.
[http://dx.doi.org/10.1021/acs.orglett.1c01301] [PMID: 34013729]
[82]
Abdelhamid, A.A.; Salama, K.S.M.; Elsayed, A.M.; Gad, M.A.; Ali Ali El-Remaily, M.A.E.A. Synthesis and toxicological effect of some new pyrrole derivatives as prospective insecticidal agents against the cotton leafworm, Spodoptera littoralis (Boisduval). ACS Omega, 2022, 7(5), 3990-4000.
[http://dx.doi.org/10.1021/acsomega.1c05049] [PMID: 35155894]
[83]
Moradgholi, F.; Lari, J.; Baratian, Y. Silica tungstic acid and sulphated silica tungstic acid as highly efficient solid acid catalysts for the synthesis of pyrrole derivatives. Russ. J. Gen. Chem., 2016, 86(12), 2924-2927.
[http://dx.doi.org/10.1134/S1070363216120616]
[84]
Goyal, S.; Patel, J.K.; Gangar, M.; Kumar, K.; Nair, V.A. Zirconocene dichloride catalysed one-pot synthesis of pyrroles through nitroalkene-enamine assembly. RSC Advances, 2015, 5(5), 3187-3195.
[http://dx.doi.org/10.1039/C4RA09873K]
[85]
Jagadhane, P.B.; Jadhav, N.C.; Herlekar, O.P.; Telvekar, V.N. Efficient, three-component synthesis of pyrrole derivatives catalyzed by iodobenzene and oxone. Synth. Commun., 2015, 45(18), 2130-2134.
[http://dx.doi.org/10.1080/00397911.2015.1066392]
[86]
Rajaguru, K.; Mariappan, A.; Muthusubramanian, S.; Bhuvanesh, N. Divergent reactivity of α-azidochalcones with metal β-diketonates: Tunable synthesis of substituted pyrroles and indoles. Org. Chem. Front., 2017, 4(1), 124-129.
[http://dx.doi.org/10.1039/C6QO00541A]
[87]
Ramaraju, P.; Mir, N.A.; Singh, D.; Sharma, P.; Kant, R.; Kumar, I. An unprecedented pseudo-[3+2] annulation between N -(4-methoxyphenyl)aldimines and aqueous glutaraldehyde: Direct synthesis of pyrrole-2,4-dialdehydes. Eur. J. Org. Chem., 2017, 2017(24), 3461-3465.
[http://dx.doi.org/10.1002/ejoc.201700500]
[88]
Tamaddon, F.; Alizadeh, M. Cocamidopropyl betaine catalyzed benzoin condensation and pseudo-four-component reaction of the in situ formed benzoin in water. Synlett, 2015, 26(4), 525-530.
[http://dx.doi.org/10.1055/s-0034-1379881]
[89]
Pagadala, R.; Kommidi, D.R.; Kankala, S.; Maddila, S.; Singh, P.; Moodley, B.; Koorbanally, N.A.; Jonnalagadda, S.B. Multicomponent one-pot synthesis of highly-functionalized pyrrole-3-carbonitriles in aqueous medium and their computational study. Org. Biomol. Chem., 2015, 13(6), 1800-1806.
[http://dx.doi.org/10.1039/C4OB02229G] [PMID: 25503439]
[90]
Zarei, M.; Sajadikhah, S.S. Green and facile synthesis of dihydropyrrol-2-ones and highly substituted piperidines using ethylenediammonium diformate (EDDF) as a reusable catalyst. Res. Chem. Intermed., 2016, 42(9), 7005-7016.
[http://dx.doi.org/10.1007/s11164-016-2512-0]
[91]
Kangani, M.; Hazeri, N.; Maghsoodlou, M.T. Synthesis of pyrrole and furan derivatives in the presence of lactic acid as a catalyst. J. Saudi Chem. Soc., 2017, 21(2), 160-164.
[http://dx.doi.org/10.1016/j.jscs.2015.03.002]
[92]
Abdelmohsen, S.A.; El-Ossaily, Y.A. One-pot synthesis of 5-[1-substituted 4-acetyl-5-methyl-1 H -pyrrol-2-yl)]-8-hydroxyquinolines using DABCO as green catalyst. Heterocycl. Commun., 2015, 21(4), 207-210.
[http://dx.doi.org/10.1515/hc-2015-0033]
[93]
Kangani, M.; Maghsoodlou, M.T.; Hazeri, N. Vitamin B12: An efficient type catalyst for the one-pot synthesis of 3,4,5-trisubstituted furan-2(5 H)-ones and N -aryl-3-aminodihydropyrrol-2-one-4-carboxylates. Chin. Chem. Lett., 2016, 27(1), 66-70.
[http://dx.doi.org/10.1016/j.cclet.2015.07.025]
[94]
Kalam Khan, F.A.; Pachpinde, A.M.; Langade, M.M.; Lohar, K.S.; Patange, S.M.; Bhusnure, O.G.; Sangshetti, J.N. Pr3+ Doped CoFe2O4: A highly efficient, magnetically recoverable and reusable catalyst for one-pot four-component synthesis of multisubstituted pyrroles. Iran. J. Catal., 2016, 6(4), 333-338.
[95]
Akelis, L.; Rousseau, J.; Juskenas, R.; Dodonova, J.; Rousseau, C.; Menuel, S.; Prevost, D. Tumkevičius, S.; Monflier, E.; Hapiot, F. Greener paal-knorr pyrrole synthesis by mechanical activation. Eur. J. Org. Chem., 2016, 2016(1), 31-35.
[http://dx.doi.org/10.1002/ejoc.201501223]
[96]
Cores, Á.; Estévez, V.; Villacampa, M.; Menéndez, J.C. Three-component access to 2-pyrrolin-5-ones and their use in target-oriented and diversity-oriented synthesis. RSC Advances, 2016, 6(45), 39433-39443.
[http://dx.doi.org/10.1039/C6RA06317A]
[97]
Marvi, O.; Nahzomi, T. Grinding solvent-free paal-knorr pyrrole synthesis on smectites as recyclable and green catalysts. Bull. Chem. Soc. Ethiop., 2018, 32(1), 139-147.
[http://dx.doi.org/10.4314/bcse.v32i1.13]
[98]
Khammas, A.J.; Yolacan, C.; Aydogan, F. Solvent free synthesis of n-substituted pyrrole derivatives catalyzed by silica sulfuric acid. Russ. J. Gen. Chem., 2018, 88(12), 2680-2683.
[http://dx.doi.org/10.1134/S1070363218120332]
[99]
Rostami, H.; Shiri, L. Fe3O4@SiO2—CPTMS—Guanidine—SO3H-catalyzed one-pot multicomponent synthesis of polysubstituted pyrrole derivatives under solvent-free conditions. Russ. J. Org. Chem., 2019, 55(8), 1204-1211.
[http://dx.doi.org/10.1134/S1070428019080207]
[100]
Xu, H.; Li, Y.; Xing, M.; Jia, J.; Han, L.; Ye, Q.; Gao, J. Synthesis of pyrroles from β-enamines and nitroolefins catalyzed by I 2 under high-speed vibration milling (HSVM). Chem. Lett., 2015, 44(4), 574-576.
[http://dx.doi.org/10.1246/cl.141102]
[101]
Zhang, X.; Weng, G.; Zhang, Y.; Li, P. Unique chemoselective Paal-Knorr reaction catalyzed by MgI2 etherate under solvent-free conditions. Tetrahedron, 2015, 71(18), 2595-2602.
[http://dx.doi.org/10.1016/j.tet.2015.03.035]
[102]
Soltani, M.; Mohammadpoor-Baltork, I.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Convenient synthesis of polysubstituted pyrroles and symmetrical and unsymmetrical bis-pyrroles catalyzed by H3PW12O40. C. R. Chim., 2016, 19(3), 381-389.
[http://dx.doi.org/10.1016/j.crci.2015.11.006]
[103]
Farahi, M.; Davoodi, M.; Tahmasebi, M. A new protocol for one-pot synthesis of tetrasubstituted pyrroles using tungstate sulfuric acid as a reusable solid catalyst. Tetrahedron Lett., 2016, 57(14), 1582-1584.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.101]
[104]
Xu, H.; Liu, H.W.; Chen, K.; Wang, G.W. One-Pot multicomponent mechanosynthesis of polysubstituted trans -2,3-Dihydropyrroles and pyrroles from amines, alkyne esters, and chalcones. J. Org. Chem., 2018, 83(11), 6035-6049.
[http://dx.doi.org/10.1021/acs.joc.8b00665] [PMID: 29745226]
[105]
Shinde, V.V.; Lee, S.D.; Jeong, Y.S.; Jeong, Y.T. p-Toluenesulfonic acid doped polystyrene (PS-PTSA): solvent-free microwave assisted cross-coupling-cyclization–oxidation to build one-pot diversely functionalized pyrrole from aldehyde, amine, active methylene, and nitroalkane. Tetrahedron Lett., 2015, 56(6), 859-865.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.126]
[106]
Dhinakaran, I.; Padmini, V.; Bhuvanesh, N. Chemodivergent, one-pot, multi-component synthesis of pyrroles and tetrahydropyridines under solvent- and catalyst-free conditions using the grinding method. ACS Comb. Sci., 2016, 18(5), 236-242.
[http://dx.doi.org/10.1021/acscombsci.5b00154] [PMID: 26972275]
[107]
Shahvelayati, A.S.; Sabbaghan, M.; Banihashem, S. Sonochemically assisted synthesis of N-substituted pyrroles catalyzed by ZnO nanoparticles under solvent-free conditions. Monatsh. Chem., 2017, 148(6), 1123-1129.
[http://dx.doi.org/10.1007/s00706-016-1904-6]
[108]
Keshavarz, R.; Farahi, M.; Karami, B.; Gheibipour, P.; Zarnegaryan, A. TiO2-coated graphene oxide-molybdate complex as a new separable nanocatalyst for the synthesis of pyrrole derivatives by Paal-Knorr reaction. Arab. J. Chem., 2022, 15(5), 103736.
[http://dx.doi.org/10.1016/j.arabjc.2022.103736]
[109]
Fattahi, K.; Farahi, M.; Karami, B.; Keshavarz, R. Design of sodium carbonate functionalized tio2 -coated Fe3O4 nanoparticles as a new heterogeneous catalyst for pyrrole synthesis. Izv. Him., 2021, 53(2)
[http://dx.doi.org/10.34049/bcc.53.2.5307]
[110]
Mondal, P.; Chatterjee, S.; Bhaumik, A.; Maity, S.; Ghosh, P.; Mukhopadhyay, C. Creation of DABCO‐based amphoteric ionic liquid supported TiO 2 nanoparticles: Execution of amplified catalytic properties on microwave‐assisted synthesis of n‐substituted pyrroles. ChemistrySelect, 2019, 4(11), 3140-3150.
[http://dx.doi.org/10.1002/slct.201900325]
[111]
Zhao, B.; Kan, W.; Jing, T.; Zhang, X.; Zheng, Y.; Chen, L. Microwave assisted one-pot synthesis of N-substituted 2-methyl-1H-pyrrole-3-carboxylate derivatives without catalyst and solvent. Heterocycles, 2015, 91(12), 2367-2376.
[http://dx.doi.org/10.3987/COM-15-13340]
[112]
Hanuman Reddy, V.; Mallikarjuna Reddy, G.; Thirupalu Reddy, M.; Rami Reddy, Y.V. Microwave-assisted facile synthesis of trisubstituted pyrrole derivatives. Res. Chem. Intermed., 2015, 41(12), 9805-9815.
[http://dx.doi.org/10.1007/s11164-015-1966-9]
[113]
Cai, Y.; Jalan, A.; Kubosumi, A.R.; Castle, S.L. Microwave-promoted tin-free iminyl radical cyclization with TEMPO trapping: A practical synthesis of 2-acylpyrroles. Org. Lett., 2015, 17(3), 488-491.
[http://dx.doi.org/10.1021/ol5035047] [PMID: 25594391]
[114]
Mariappan, A.; Rajaguru, K.; Muthusubramanian, S.; Bhuvanesh, N. Microwave-assisted catalyst-free synthesis of tetrasubstituted pyrroles using dialkyl acetylenedicarboxylates and monophenacylanilines. Synth. Commun., 2016, 46(9), 805-812.
[http://dx.doi.org/10.1080/00397911.2016.1176201]
[115]
Chachignon, H.; Scalacci, N.; Petricci, E.; Castagnolo, D. Synthesis of 1,2,3-substituted pyrroles from propargylamines via a one-pot tandem enyne cross metathesis–cyclization reaction. J. Org. Chem., 2015, 80(10), 5287-5295.
[http://dx.doi.org/10.1021/acs.joc.5b00222] [PMID: 25897951]
[116]
Tan, X.M.; Lai, Q.M.; Yang, Z.W.; Long, X.; Zhou, H.L.; You, X.L.; Jiang, X.J.; La Cui, H-L. (OTf)3 catalyzed synthesis of α-aryl tetrasubstituted pyrroles through [4+1] annulation under microwave irradiation. Tetrahedron Lett., 2017, 58(2), 163-167.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.122]
[117]
Mir, N.A.; Choudhary, S.; Ramaraju, P.; Singh, D.; Kumar, I. Microwave assisted aminocatalyzed [3 + 2] annulation between α-iminonitriles and succinaldehyde: Synthesis of pyrrole-3-methanols and related polycyclic ring systems. RSC Advances, 2016, 6(46), 39741-39749.
[http://dx.doi.org/10.1039/C6RA06831F]
[118]
Gullapelli, K.; Brahmeshwari, G.; Ravichander, M. A facile synthesis of 1-aryl pyrroles by Clauson-Kaas reaction using oxone as a Catalyst under microwave irradiation. Bull. Chem. Soc. Ethiop., 2019, 33(1), 143-148.
[http://dx.doi.org/10.4314/bcse.v33i1.14]
[119]
Gajengi, A.L.; Fernandes, C.S.; Bhanage, B.M. Synthesis of Cu 2 O/Ag nanocomposite and their catalytic application for the one pot synthesis of substituted pyrroles. Molecular Catalysis, 2018, 451, 13-19.
[http://dx.doi.org/10.1016/j.mcat.2017.10.010]
[120]
Li, J.; Duan, W.; Pan, X.; Ye, Y.; Huang, C. Microwave irradiation tandem hydroamination and oxidative cyclization of natural amino acids with diethyl acetylenedicarboxylate for functionalized pyrrole derivatives. ChemistrySelect, 2019, 4(12), 3281-3285.
[http://dx.doi.org/10.1002/slct.201900198]
[121]
De Souza, T.M.; Bieber, L.W.; Longo, R.L.; Malvestiti, I. Microwave-assisted synthesis of N-substituted-2,5-dihydro-1H-pyrroles and N-substituted-1H-pyrroles in water. ChemistrySelect, 2018, 3(1), 34-39.
[http://dx.doi.org/10.1002/slct.201702325]
[122]
Gao, Y.; Hu, C.; Wan, J.P.; Wen, C. Metal-free cascade reactions of aldehydes and primary amines for the synthesis of 1,3,4-trisubstituted pyrroles. Tetrahedron Lett., 2016, 57(43), 4854-4857.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.063]
[123]
Tang, J.; Yang, M.; Yang, M.; Wang, J.; Dong, W.; Wang, G. Heterogeneous Fe-MIL-101 catalysts for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. New J. Chem., 2015, 39(6), 4919-4923.
[http://dx.doi.org/10.1039/C5NJ00632E]
[124]
Moghaddam, F.M.; Koushki Foroushani, B.; Rezvani, H.R. Nickel ferrite nanoparticles: An efficient and reusable nanocatalyst for a neat, one-pot and four-component synthesis of pyrroles. RSC Advances, 2015, 5(23), 18092-18096.
[http://dx.doi.org/10.1039/C4RA09348H]
[125]
Pagadala, R.; Kusampally, U. Benzyltrimethylammonium dichloroiodate catalyzed four‐component synthesis of fully functionalized pyrroles under eco‐compatible conditions. J. Heterocycl. Chem., 2018, 56(2), 710-713.
[http://dx.doi.org/10.1002/jhet.3414]
[126]
Hu, H.C.; Liu, Y.H.; Li, B.L.; Cui, Z.S.; Zhang, Z.H. Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles. RSC Advances, 2015, 5(10), 7720-7728.
[http://dx.doi.org/10.1039/C4RA13577F]
[127]
Darehkordi, A.; Rahmani, F. Synthesis of trifluoromethylated pyrroles via a one-pot three-component reaction. Synlett, 2017, 28(10), 1224-1226.
[http://dx.doi.org/10.1055/s-0036-1588732]
[128]
Zhao, D.; Zhu, Y.; Guo, S.; Chen, W.; Zhang, G.; Yu, Y. A three-component one-pot synthesis of penta-substituted pyrroles via ring opening of α-nitroepoxides. Tetrahedron, 2017, 73(20), 2872-2877.
[http://dx.doi.org/10.1016/j.tet.2017.03.074]
[129]
Reddy, G.N.; Likhar, P.R. Green multicomponent reaction for synthesis of trisubstituted pyrroles in ionic liquid [bmim]BF4. Res. Chem. Intermed., 2016, 42(9), 6873-6879.
[http://dx.doi.org/10.1007/s11164-016-2501-3]
[130]
Palmieri, A.; Gabrielli, S.; Parlapiano, M.; Ballini, R. One-pot synthesis of alkyl pyrrole-2-carboxylates starting from β-nitroacrylates and primary amines. RSC Advances, 2015, 5(6), 4210-4213.
[http://dx.doi.org/10.1039/C4RA13094D]
[131]
Eberlin, L.; Carboni, B.; Whiting, A. Regioisomeric and substituent effects upon the outcome of the reaction of 1-borodienes with nitrosoarene compounds. J. Org. Chem., 2015, 80(13), 6574-6583.
[http://dx.doi.org/10.1021/acs.joc.5b00593] [PMID: 26039269]
[132]
Chen, Z.; Chen, H.; Yang, X.; Chang, X. Novel one-pot cyclization of the blaise reaction intermediate and arylglyoxals: The synthesis of substituted NH-pyrroles. Synlett, 2017, 28(12), 1463-1466.
[http://dx.doi.org/10.1055/s-0036-1588168]
[133]
George, J.; Kim, H.Y.; Oh, K. Regioselective synthesis of pyrroles from alkyne-isocyanide click reactions: An angle strain-induced bond migration approach. Adv. Synth. Catal., 2016, 358(23), 3714-3718.
[http://dx.doi.org/10.1002/adsc.201601017]
[134]
Sun, J.; Sun, H.; Hao, L.; Liu, H.; Zhang, Z.; Wen, F.; Li, H.; Duan, G.; You, G.; Xia, C. Metal‐free synthesis of pyrrole‐imidazole alkaloids via a tandem C−N, C−C coupling protocol. Adv. Synth. Catal., 2021, 363(7), 1882-1886.
[http://dx.doi.org/10.1002/adsc.202001441]
[135]
Patel, A.; Shah, D.; Patel, N.; Patel, K.; Soni, N.; Nagai, A.; Shah, U.; Patel, M.; Patel, S.; Bhimani, B.; Bambharoliya, T. Quinoxaline as ubiquitous structural fragment: An update on the recent development of its green synthetic approaches. Curr. Org. Chem., 2021, 25(24), 3004-3016.
[http://dx.doi.org/10.2174/1385272825666211125102145]
[136]
Patel, A.; Shah, J.; Patel, K.; Patel, K.; Patel, H.; Dobaria, D.; Shah, U.; Patel, M.; Chokshi, A.; Patel, S.; Parekh, N.; Shah, H.; Patel, H.; Bambharoliya, T. Ultrasound-assisted one-pot synthesis of tetrahydropyrimidne derivatives through biginelli condensation: A catalyst free green chemistry approach. Lett. Org. Chem., 2021, 18(9), 749-756.
[http://dx.doi.org/10.2174/1570178617999201105162851]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy