Skip to main content

Advertisement

Log in

Exercise Improves Orofacial Pain and Modifies Neuropeptide Expression in a Rat Model of Parkinson’s Disease

  • Research
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Pain is a common non-motor symptom of Parkinson's disease (PD), which often occurs in the early disease stages. Despite the high prevalence, it remains inadequately treated. In a hemi-parkinsonian rat model, we aimed to investigate the neurochemical factors involved in orofacial pain development, with a specific focus on pain-related peptides and cannabinoid receptors. We also evaluated whether treadmill exercise could improve orofacial pain and modulate these mechanisms. Rats were unilaterally injected in the striatum with either 6-hydroxydopamine (6-OHDA) or saline. Fifteen days after stereotactic surgery, the animals were submitted to treadmill exercise (EX), or remained sedentary (SED). Pain assessment was performed before the surgical procedure and prior to each training session. Pain-related peptides, substance P (SP), calcitonin gene-related peptide (CGRP), and transient receptor potential vanilloid type 1 (TRPV1) activation and cannabinoid receptor type 1 (CB1) and type 2 (CB2) were evaluated in the trigeminal nucleus. In order to confirm the possible involvement of cannabinoid receptors, we also injected antagonists of CB1 and CB2 receptors. We confirmed the presence of orofacial pain after unilateral 6-OHDA-injection, which improved after aerobic exercise training. We also observed increased pain-related expression of SP, CGRP and TRPV1 and decreased CB1 and CB2 in the trigeminal ganglion and caudal spinal trigeminal nucleus in animals with PD, which was reversed after aerobic exercise training. In addition, we confirm the involvement of cannabinoid receptors since both antagonists decreased the nociceptive threshold of PD animals. These data suggest that aerobic exercise effectively improved the orofacial pain associated with the PD model, and may be mediated by pain-related neuropeptides and cannabinoid receptors in the trigeminal system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adewusi JK, Hadjivassiliou M, Vinagre-Aragon A, O’Connor KR, Khan A, Grunewald RA, Zis P (2018) Sensory neuropathic symptoms in idiopathic Parkinson’s disease: prevalence and impact on quality of life. Acta Neurologica Belgica 118(3):445–450. https://doi.org/10.1007/s13760-018-0947-3

    Article  PubMed  Google Scholar 

  • Akerman S, Kaube H, Goadsby PJ (2004) Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J Pharmacol Exp Ther 309(1):56–63. https://doi.org/10.1124/jpet.103.059808

    Article  CAS  PubMed  Google Scholar 

  • Barrot M (2012) Tests and models of nociception and pain in rodents. Neurosci 211(39):50 S0306-4522(11)01438-2. https://doi.org/10.1016/j.neuroscience.2011.12.041

  • Basavarajappa BS, Shivakumar M, Joshi V, Subbanna S (2017) Endocannabinoid system in neurodegenerative disorders. J Neurochem 142(5):624–648. https://doi.org/10.1111/jnc.14098

  • Binda KH, Real CC, Ferreira AFF, Britto LRG, Chacur M (2019) Antinociceptive effects of treadmill exercise in a rat model of Parkinson’s disease: the role of cannabinoid and opioid receptors. Brain Res 46521. https://doi.org/10.1016/j.brainres.2019.146521

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:24854. https://doi.org/10.1006/abio.1976.9999. 0003-2697(76)90527-3[pii]

  • Broen MP, Braaksma MM, Patijn J, Weber WE (2012) Prevalence of pain in Parkinson’s disease: a systematic review using the modified QUADAS tool. Mov Disord 27(4):480–484. https://doi.org/10.1002/mds.24054

  • Chen YW, Tzeng JI, Lin MF, Hung CH, Wang JJ (2014) Forced treadmill running suppresses postincisional pain and inhibits upregulation of substance P and cytokines in rat dorsal root ganglion. J Pain 15(8):827–834. https://doi.org/10.1016/j.jpain.2014.04.010

  • Christoforou J (2018) Neuropathic Orofacial Pain. Dent Clin North Am 62(4):565–584. https://doi.org/10.1016/j.cden.2018.05.005

    Article  PubMed  Google Scholar 

  • de Freitas Rodrigues A, de Oliveira Martins D, Chacur M, Luz JG (2020) The effectiveness of photobiomodulation in the management of temporomandibular pain sensitivity in rats: behavioral and neurochemical effects. Lasers Med Sci 35(2):447–453. https://doi.org/10.1007/s10103-019-02842-010.1007/s10103-019-02842-0

  • De Leeuw R, Klasser GD (2018) Orofacial pain: guidelines for assessment, diagnosis, and management. Quintessence Publishing Company, Incorporated Hanover Park, IL, USA

  • Dieb W, Ouachikh O, Durif F, Hafidi A (2014) Lesion of the dopaminergic nigrostriatal pathway induces trigeminal dynamic mechanical allodynia. Brain Behav 4(3):368–80. https://doi.org/10.1002/brb3.214

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieb W, Ouachikh O, Alves S, Boucher Y, Durif F, Hafidi A (2016) Nigrostriatal dopaminergic depletion increases static orofacial allodynia. J Headache Pain 17:11. https://doi.org/10.1186/s10194-016-0607-z

  • Domenici RA, Campos ACP, Maciel ST, Berzuino MB, Hernandes  MS, Fonoff ET, Pagano RL (2019) (2019) Parkinson's disease and pain: Modulation of nociceptive circuitry in a rat model of nigrostriatal lesion. Exp Neurol 315(72):81. https://doi.org/10.1016/j.expneurol.2019.02.007. S0014-4886(18)30509-0[pii]

  • Fehrenbacher JC, Sun XLX, Locke EE, Henry MA, Hargreaves KM (2009) Capsaicin-evoked iCGRP release from human dental pulp: A model system for the study of peripheral neuropeptide secretion in normal healthy tissue. Pain 144(3):253–261. https://doi.org/10.1016/j.pain.2009.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira-Vieira TH, Bastos CP, Pereira GS, Moreira FA, Massensini AR (2014) A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice. Hippocampus 24(1):79–88. https://doi.org/10.1002/hipo.22206

    Article  CAS  PubMed  Google Scholar 

  • Ford B (2010) Pain in Parkinson’s disease. Mov Disord 25(Suppl 1):S98-103. https://doi.org/10.1002/mds.22716

    Article  PubMed  Google Scholar 

  • Galdino G, Romero TRL, Silva JFP, Aguiar DC, de Paula AM, Cruz JS, Parrella C, Piscitelli F, Duarte ID, Di Marzo V, Perez AC (2014) The endocannabinoid system mediates aerobic exercise-induced antinociception in rats. Neuropharmacology 77:313–324. https://doi.org/10.1016/j.neuropharm.2013.09.022

    Article  CAS  PubMed  Google Scholar 

  • Garcia PC, Real CC, Britto LR (2017) The Impact of Short and Long-Term Exercise on the Expression of Arc and AMPARs During Evolution of the 6-Hydroxy-Dopamine Animal Model of Parkinson’s Disease. J Mol Neurosci 61(4):542–552. https://doi.org/10.1007/s12031-017-0896-y

    Article  CAS  PubMed  Google Scholar 

  • Hagelberg N, Forssell H, Aalto S, Rinne JO, Scheinin H, Taiminen T, Nagren K, Eskola O, Jaaskelainen SK (2003) Altered dopamine D2 receptor binding in atypical facial pain. Pain 106(1–2):43–48. https://doi.org/10.1016/s0304-3959(03)00275-6. S0304395903002756[pii]

  • Han QW, Yuan YH, Chen NH (2020) The therapeutic role of cannabinoid receptors and its agonists or antagonists in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 96:109745. https://doi.org/10.1016/j.pnpbp.2019.109745

  • Hansen JM, Ashina M (2014) Calcitonin gene-related peptide and migraine with aura: A systematic review. Cephalalgia 34(9):695–707. https://doi.org/10.1177/0333102413520084. 0333102413520084[pii]

    Article  PubMed  Google Scholar 

  • Hazekamp A, Grotenhermen F (2010) Review on clinical studies with cannabis and cannabinoids 2005-2009. Cannabinoids 2010(5):1–21

  • Holmes MM, Galea LAM, Mistlberger RE, Kempermann G (2004) Adult hippocampal neurogenesis and voluntary running activity: Circadian and dose-dependent effects. J Neurosci Res 76(2):216–222. https://doi.org/10.1002/jnr.20039

    Article  CAS  PubMed  Google Scholar 

  • International Classification of Orofacial Pain (2020) 1st edition (ICOP). Cephalalgia 40(2):129–221

    Google Scholar 

  • Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36(1):57–68

    Article  CAS  PubMed  Google Scholar 

  • Khan J, Wang Q, Korczeniewska OA, Eliav R, Ren Y, Eliav E (2021) Exercise-induced hypoalgesia profile in a rat neuropathic pain model predicts pain severity following infraorbital nerve injury and is associated with local cytokine levels, systemic endocannabinoids, and endogenous opioids. J Oral Facial Pain Headache 35(3):16

    Article  Google Scholar 

  • Liang YC, Huang CC, Hsu KS, Takahashi T (2004) Cannabinoid-induced presynaptic inhibition at the primary afferent trigeminal synapse of juvenile rat brainstem slices. J Physiol-London 555(1):85–96. https://doi.org/10.1113/jphysiol.2003.056986

    Article  CAS  PubMed  Google Scholar 

  • Leiser SC, Moxon KA (2006) Relationship between physiological response type (RA and SA) and vibrissal receptive field of neurons within the rat trigeminal ganglion. J Neurophysiol 95(5):3129–3145. https://doi.org/10.1152/jn.00157.2005. 00157.2005[pii]

  • Liu Z, Qiu AW, Huang Y, Yang Y, Chen JN, Gu TT, Cao BB, Qiu YH, Peng YP (2019) IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s disease. Brain Behav Immun 81:630–645

    Article  CAS  PubMed  Google Scholar 

  • Long H, Liao LN, Gao MY, Ma WQ, Zhou Y, Jian F, Wang Y, Lai WL (2015) Periodontal CGRP contributes to orofacial pain following experimental tooth movement in rats. Neuropeptides 52:31–37. https://doi.org/10.1016/j.npep.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  • Martins DO, Dos Santos FM, Ciena AP, Watanabe IS, de Britto LR, Lemos JB, Chacur M (2017) Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: Effects of photobiomodulation. Lasers Med Sci. https://doi.org/10.1007/s10103-017-2181-2

    Article  PubMed  Google Scholar 

  • Meng JH, Ovsepian SV, Wang JF, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO (2009) Activation of trpv1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci 29(15):4981–4992. https://doi.org/10.1523/Jneurosci.5490-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AJ, Roman B, Norstrom E (2016) A method for easily customizable gradient gel electrophoresis. Anal Biochem 509(12):14. https://doi.org/10.1016/j.ab.2016.07.003. S0003-2697(16)30170-1[pii]

  • Mlost J, Kostrzewa M, Malek N, Starowicz K (2018) Molecular Understanding of the Activation of CB1 and Blockade of TRPV1 Receptors: Implications for Novel Treatment Strategies in Osteoarthritis. Int J Mol Sci 19(2). https://doi.org/10.3390/ijms19020342ijms19020342. E342[pii]

  • Navarrete F, Garcia-Gutierrez MS, Aracil-Fernandez A, Lanciego JL, Manzanares J (2018) cannabinoid cb1 and cb2 receptors, and monoacylglycerol lipase gene expression alterations in the basal ganglia of patients with parkinson’s disease. Neurotherapeutics 15(2):459–469. https://doi.org/10.1007/s13311-018-0603-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Neill F, Kobylecki C, Carrasco R, Hu MT, Grosset D, Silverdale M (2021) Orofacial pain in 1916 patients with early or moderate Parkinson disease. Pain Rep 6(1)

  • O’Sullivan SS, Williams DR, Gallagher DA, Massey LA, Silveira-Moriyama L, Lees AJ (2008) Nonmotor symptoms as presenting complaints in Parkinson’s disease: a clinicopathological study. Mov Disord 23(1):101–116. https://doi.org/10.1002/mds.21813

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C ( 2013): The Rat Brain in Stereotaxic Coordinates, 7th ed. New York: Academic Press

    Google Scholar 

  • Priebe JA, Kunz M, Morcinek C, Rieckmann P, Lautenbacher S (2015) Does Parkinson's disease lead to alterations in the facial expression of pain? J Neurol Sci 359(1–2):226–235. https://doi.org/10.1016/j.jns.2015.10.056S0022-510X(15)30008-3

  • Real CC, Garcia PC, Britto LRG (2017) Treadmill exercise prevents increase of neuroinflammation markers involved in the dopaminergic damage of the 6-OHDA Parkinson's Disease Model. J Mol Neurosci 63(1):36–49. https://doi.org/10.1007/s12031-017-0955-4

  • Saito H, Katagiri A, Okada S, Mikuzuki L, Kubo A, Suzuki T, Ohara K, Lee J, Gionhaku N, Iinuma T, Bereiter DA, Iwata K (2017) Ascending projections of nociceptive neurons from trigeminal subnucleus caudalis: A population approach. Exp Neurol 293:124–136. https://doi.org/10.1016/j.expneurol.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  • Sahbaie P, Shi X, Guo TZ, Qiao Y, Yeomans DC, Kingery WS, Clark JD (2009) Role of substance P signaling in enhanced nociceptive sensitization and local cytokine production after incision. Pain 145(3)341–9. https://doi.org/10.1016/j.pain.2009.06.037. S03043959(09)00385-6[pii]

  • Snedecor, GW, Sokal RR, Rohlf FJ (1946) Statistical methods Biometry. 4 ed. Ames, ed. W.H. Freeman & Co. 1946, New York: Owa State University Press. p 859

  • Stampanoni Bassi M, Sancesario A, Morace R, Centonze D, Iezzi E (2017) Cannabinoids in parkinson's disease. Cannabis Cannabinoid Res 2(1):21–29. https://doi.org/10.1089/can.2017.0002

  • Sun RQ, Lawand NB, Willis WD (2003) The role of calcitonin gene-related peptide (CGRP) in the generation and maintenance of mechanical allodynia and hyperalgesia in rats after intradermal injection of capsaicin. Pain 104(1–2):201–208. https://doi.org/10.1016/s0304-3959(03)00008-3. S0304395903000083[pii]

    Article  CAS  PubMed  Google Scholar 

  • Tanner J, Teerijoki-Oksa T, Kautiainen H, Vartiainen P, Kalso E, Forssell H (2022) Health-related quality of life in patients with chronic orofacial pain compared with other chronic pain patients. Clin Exp Dent Res 8(3):742–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Tominaga M (2010) Activation and regulation of nociceptive transient receptor potential (TRP) channels, TRPV1 and TRPA1 Yakugaku Zasshi 130(3):289–294

  • Vivanco-Estela AN, Dos-Santos-Pereira M, Guimaraes FS, Del-Bel E, Nascimento GCD (2021) Cannabidiol has therapeutic potential for myofascial pain in female and male parkinsonian rats. Neuropharmacology 196:108700

  • Wang S, Kim M, Ali Z, Ong K, Pae EK, Chung MK (2019) TRPV1 and TRPV1-Expressing nociceptors mediate orofacial pain behaviors in a mouse model of orthodontic tooth movement. Front Physiol 10(1207)

  • Wang S, Lim J, Joseph J, Wei F, Ro JY, Chung MK (2017) Spontaneous and bite-evoked muscle pain are mediated by a common nociceptive pathway with differential contribution by TRPV1. J Pain 18(11):1333–1345

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang YY, Song N, Liu F, Lin J, Liu MK, Huang CL, Liao DQ, Zhou C, Wang H, Shen JF (2019) Activation of mitogen-activated protein kinases in satellite glial cells of the trigeminal ganglion contributes to substance P-mediated inflammatory pain. Int J Oral Sci 1. UNSP 24. https://doi.org/10.1038/s41368-019-0055-0

  • Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  PubMed  Google Scholar 

  • Zis P, Sokolov E, Chaudhuri KR (2016) An overview of pain in Parkinson’s disease. In: Battaglia AA (ed) An Introduction to Pain and its Relation to Nervous System Disorders. John Wiley & Sons, Ltd, pp 387–408

    Chapter  Google Scholar 

Download references

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (2015/24256-0; 2014/24533-0; 2017/26821-1; 2017/05218-5, 2021/02897-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (157284/2017-4; 405853/2018-1) supported this study (Brazil). The funding agencies play no role in the design of the study, data collection, analysis, interpretation of the data, or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the following tasks of research: initial conception (Martins D.O.; Binda, K.H.); design (Martins D.O.; Binda, K.H., Chacur M.); provision of resources (Chacur M.); collection of data (Martins D.O.; Binda, K.H.); analysis and interpretation of data (Martins D.O.; Binda, K.H.); writing the first draft of the paper or important intellectual content (Martins D.O.; Binda, K.H.); revision of paper (Martins D.O.; Binda, K.H.; Chacur M.).

Corresponding author

Correspondence to Daniel Oliveira Martins.

Ethics declarations

Ethical Approval

The Institutional Animal Care Committee approved the study of the Institute of Biomedical Sciences, University of São Paulo (protocol number 4860310118). This study is reported following the ARRIVE guidelines (http://www.nc3rs.org.uk/arrive-guidelines).

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20402 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binda, K.H., Chacur, M. & Martins, D.O. Exercise Improves Orofacial Pain and Modifies Neuropeptide Expression in a Rat Model of Parkinson’s Disease. Neurotox Res 41, 459–470 (2023). https://doi.org/10.1007/s12640-023-00651-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-023-00651-6

Keywords

Navigation