Skip to main content
Log in

Development of metal-organic deposition-derived second-generation high-temperature superconductor tapes and artificial flux pinning

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

The second-generation high-temperature superconductor tape (2G-HTS, also known as a coated conductor) based on REBaCuO (REBa2Cu3O7–δ) exhibits high current density and potential cost-effective price/performance, compared with conventional superconducting materials. Using commercial 2G-HTS tapes, more than a dozen cable vendors had been manufacturing REBCO cables, such as the latest kilometer-class REBCO cable, which was incorporated into a civil grid on December 2021, as part of the record-breaking 35-kV-voltage superconductor cable demonstration project in downtown Shanghai. This paper describes the development of HTS-coated conductors, then outlines the various technological routes for their preparation, reviews the artificial flux pinning of coated conductors, and finally summarizes the technological breakthroughs, the latest research advances, and provides an outlook on their application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Reference

  1. Park T, Park E, Lee H et al (2008) Pressure-induced superconductivity in CaFe2As2. J Phys-Condens Mat 20(32):322204. https://doi.org/10.1088/0953-8984/20/32/322204

    Google Scholar 

  2. Larbalestier D, Gurevich A, Feldmann DM et al (2001) High-Tc superconducting materials for electric power applications. Nature 414(6961):368–377

    Google Scholar 

  3. Crisan A (2017) Vortices and nanostructured superconductors. Springer, Berlin

    Google Scholar 

  4. Breit V, Schweiss P, Hauff R et al (1995) Evidence for chain superconductivity in near-stoichiometric YBa2Cu3O7−δ single crystals. Phys Rev B 52(22):15727–15730

    Google Scholar 

  5. Macmanus-Driscoll JL, Wimbush SC (2021) Processing and application of high-temperature superconducting coated conductors. Nat Rev Mater 6(7):587–604

    Google Scholar 

  6. Foltyn SR, Civale L, Macmanus-Driscoll JL et al (2007) Materials science challenges for high-temperature superconducting wire. Nat Mater 6(9):631–642

    Google Scholar 

  7. Teresa P, Xavier O (2014) Coated conductors for power applications: materials challenges. Supercon Sci Tech 27(4):044003. https://doi.org/10.1088/0953-2048/27/4/044003

    Google Scholar 

  8. Xu A, Delgado L, Gharahcheshmeh MH et al (2015) Strong correlation between Jc(T, H||c) and Jc(77 K, 3 T||c) in Zr-added (Gd, Y)BaCuO coated conductors at temperatures from 77 down to 20 K and fields up to 9 T. Supercond Sci Technol 28(8):082001. https://doi.org/10.1088/0953-2048/28/8/082001

    Google Scholar 

  9. Mankiewich PM, Scofield JH, Skocpol WJ et al (1987) Reproducible technique for fabrication of thin films of high transition temperature superconductors. Appl Phys Lett 51(21):1753–1755

    Google Scholar 

  10. Gupta A, Jagannathan R, Cooper EI et al (1988) Superconducting oxide films with high transition temperature prepared from metal trifluoroacetate precursors. Appl Phys Lett 52(24):2077–2079

    Google Scholar 

  11. Smith JA, Cima MJ, Sonnenberg N (1999) High critical current density thick MOD-derived YBCO films. IEEE T Appl Supercon 9(2):1531–1534

    Google Scholar 

  12. Dawley JT, Clem PG, Boyle T et al (2004) Rapid processing method for solution deposited YBa2Cu3O7−δ thin films. Physica C 402(1):143–151

    Google Scholar 

  13. Rupich MW, Schoop U, Verebelyi DT et al (2009) The development of second generation HTS wire at American superconductor. IEEE T Appl Supercon 19(2):3231–3235

    Google Scholar 

  14. Malozemoff AP, Fleshler S, Rupich M et al (2007) Progress in HTS coated conductors and their applications. Supercon Sci Tech 21(3):034005. https://doi.org/10.1088/0953-2048/21/3/034005

    Google Scholar 

  15. Cui XM, Tao BW, Tian Z et al (2006) Enhancement of flux pinning of TFA-MOD YBCO thin films by embedded nanoscale Y2O3. Supercon Sci Tech 19(8):844. https://doi.org/10.1088/0953-2048/19/8/027

    Google Scholar 

  16. Goyal A, Norton DP, Budai JD et al (1996) High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3O7−δ thick films on biaxially textured metals. Appl Phys Lett 69(12):1795–1797

    Google Scholar 

  17. Iijima Y, Tanabe N, Kohno O et al (1992) In-plane aligned YBa2Cu3O7−δ thin films deposited on polycrystalline metallic substrates. Appl Phys Lett 60(6):769–771

    Google Scholar 

  18. Wu XD, Foltyn SR, Arendt PN et al (1995) Properties of YBa2Cu3O7−δ thick films on flexible buffered metallic substrates. Appl Phys Lett 67(16):2397–2399

    Google Scholar 

  19. Yasuhirio I, Kazuomi, et al (2002) Temperature and RE elemental dependence for ZrO2-RE2O3 oxide film growth by IBAD method. Physica C 378(2):960–964

    Google Scholar 

  20. Hühne R, Güth K, Gartner R et al (2010) Application of textured IBAD-TiN buffer layers in coated conductor architectures. Supercon Sci Tech 23(1):014010. https://doi.org/10.1088/0953-2048/23/1/014010

    Google Scholar 

  21. Kidszun M, Huhne R, Holzapfel B et al (2010) Ion-beam-assisted deposition of textured NbN thin films. Supercon Sci Tech 23(2):025010. https://doi.org/10.1088/0953-2048/23/2/025010

    Google Scholar 

  22. Iijima Y, Kakimoto K, Yamada Y et al (2004) Research and development of biaxially textured IBAD-GZO templates for coated superconductors. Mrs Bull 29(8):564–571

    Google Scholar 

  23. Usoskin A, Betz U, Dietrich R et al (2016) Long HTS coated conductors processed via large area PLD/ABAD deposition for high field applications. IEEE T Appl Supercon 26(3):6602304. https://doi.org/10.1109/TASC.2016.2542253

    Google Scholar 

  24. Prusseit W, Nemetschek R, Hoffmann C et al (2005) ISD process development for coated conductors. Physica C 426(2):866–871

    Google Scholar 

  25. Selvamanickam V, Chen Y, Xiong X et al (2008) Progress in second-generation HTS wire development and manufacturing. Physica C 468(15):1504–1509

    Google Scholar 

  26. Kakimoto K, Igarashi M, Hanada Y et al (2009) High-speed deposition of high-quality RE123 films by a PLD system with hot-wall heating. Supercon Sci Tech 23(1):014016. https://doi.org/10.1088/0953-2048/23/1/014016

    Google Scholar 

  27. Selvamanickam V, Xie Y, Reeves J et al (2004) MOCVD-based YBCO-coated conductors. Mrs Bull 29(8):579–582

    Google Scholar 

  28. Matias V, Hanisch J, Reagor D et al (2009) Reactive Co-evaporation of YBCO as a low-cost process for fabricating coated conductors. IEEE T Appl Supercon 19(3):3172–3175

    Google Scholar 

  29. Holesinger TG, Civale L, Maiorov B et al (2008) Progress in nanoengineered microstructures for tunable high-current, high-temperature superconducting wires. Adv Mater 20(3):391–407

    Google Scholar 

  30. Qi X, Macmanus-Driscoll JL (2001) Liquid phase epitaxy processing for high temperature superconductor tapes. Curr Opin Solid St M 5(4):291–300

    Google Scholar 

  31. Yoshizumi M, Nakanishi T, Matsuda J et al (2008) Crystal growth of YBCO coated conductors by TFA-MOD method. Physica C 468(15):1531–1533

    Google Scholar 

  32. Senatore C, Barth C, Bonura M et al (2016) Field and temperature scaling of the critical current density in commercial REBCO coated conductors. Supercon Sci Tech 29(1):014002. https://doi.org/10.1088/0953-2048/29/1/014002

    Google Scholar 

  33. Araki T, Hirabayashi I (2003) Review of a chemical approach to YBa2Cu3O7−δ coated superconductors-metalorganic deposition using trifluoroacetates. Supercon Sci Tech 16(11):R71–R94

    Google Scholar 

  34. Obradors X, Puig T, Pomar A et al (2006) Progress towards all-chemical superconducting YBa2Cu3O7−δ-coated conductors. Supercon Sci Tech 19(3):S13–S26

    Google Scholar 

  35. Li M, Yang W, Shu G et al (2015) Controlled-growth of film using modified low-fluorine chemical solution deposition. IEEE T Appl Supercon 25(3):1–4

    Google Scholar 

  36. Gu Z, Cui C, Jie Y et al (2016) Direct observation of wrinkling and healing evolution for YBa2Cu3O7−δ precursor films prepared by the metalorganic solution method. IEEE T Appl Supercon 26(8):1–7

    Google Scholar 

  37. Li M, Liu Z, Bai C et al (2017) Artificial control for nucleation and growth rate of YBa2Cu3O7–δ coated conductors prepared by low fluorine chemical solution deposition. Physica C 537:29–33

    Google Scholar 

  38. Wimbush SS (2022) A high-temperature superconducting (HTS) wire critical current database. http://www.figureshare.org. Accessed 21 Feb 2022

  39. Ito T, Ichino Y, Tsuchiya Y et al (2021) Enhancement of I-C of BaHfO3 -doped REBCO thick coated conductor using vapor-liquid-solid growth technique. IEEE T Appl Supercon 31(5):6601304. https://doi.org/10.1109/TASC.2021.3072480

    Google Scholar 

  40. Ito T (2021) Enhancement of Ic of BaHfO3-doped REBCO thick coated conductor using vapor-liquid-solid growth technique. IEEE T Appl Supercon 31(5):6601304. https://doi.org/10.1109/TASC.2021.3072480

    Google Scholar 

  41. Yasuda K, Ito T, Tsuchiya Y et al (2020) Fabrication of YBa2Cu3O7−δ coated conductor by vapor-liquid-solid growth technique using a reel-to-reel system. J Phys Conf Ser JPCS 1590:012029. https://doi.org/10.1088/1742-6596/1590/1/012029

    Google Scholar 

  42. Ito T (2021) Effect of surface liquid layer during film growth on morphology of BaHfO3 in YBa2Cu3O7−δ coated conductors fabricated by pulsed laser deposition. IEEE T Appl Supercon 31(5):6601205. https://doi.org/10.1109/TASC.2021.3071143

    Google Scholar 

  43. Hopkins SC, Mitchell-Williams TB, Bussche DRV et al (2016) Low AC loss inkjet-printed multifilamentary YBCO coated conductors. IEEE T Appl Supercon 26(3):1–5

    Google Scholar 

  44. Driessche IV, Feys J, Hopkins SC et al (2012) Chemical solution deposition using ink-jet printing for YBCO coated conductors. Supercon Sci Tech 25(6):65017–65028

    Google Scholar 

  45. Vandaele K, Mosiadz M, Hopkins SC et al (2012) The influence of heat treatment parameters on pyrolysed TFA-derived YBCO films deposited by inkjet printing. Mater Res Bull 47(8):2032–2039

    Google Scholar 

  46. Soler L, Jareo J, Banchewski J et al (2020) Ultrafast transient liquid assisted growth of high current density superconducting films. Nat Commun 11(1):344. https://doi.org/10.1038/s41467-019-13791-1

    Google Scholar 

  47. Rasi S, Soler L, Jareo J et al (2020) Relevance of the formation of intermediate non-equilibrium phases in YBa2Cu3O7−δ film growth by transient liquid assisted growth. J Phys Chem C 124(28):15574–15584

    Google Scholar 

  48. Feys J, Vermeir P, Lommens P et al (2012) Ink-jet printing of YBa2Cu3O7−δ superconducting coatings and patterns from aqueous solutions. J Mater Chem 22(9):3717–3726

    Google Scholar 

  49. Obradors X, Puig T, Ricart S et al (2012) Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7−δ thin films based on trifluoroacetate solutions. Supercon Sci Tech 25(12):123001. https://doi.org/10.1088/0953-2048/25/12/123001

    Google Scholar 

  50. Nakaoka K, Yoshida R, Kimura K et al (2017) Another approach for controlling size and distribution of nanoparticles in coated conductors fabricated by the TFA-MOD method. Supercon Sci Tech 30(5):055008. https://doi.org/10.1088/1361-6668/aa66e1

    Google Scholar 

  51. Wu JZ, Shi JJ (2017) Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films. Supercon Sci Tech 30(10):103002. https://doi.org/10.1088/1361-6668/aa8288

    Google Scholar 

  52. Kwok WK, Welp U, Glatz A et al (2016) Vortices in high-performance high-temperature superconductors. Rep Prog Phys 79(11):116501. https://doi.org/10.1088/0034-4885/79/11/116501

    Google Scholar 

  53. Chen J, Huang RT, Shen JJ et al (2021) Significant improvement of the critical current of mod-derived YBa2Cu3O7−δ-coated conductors by post-annealing treatment. Appl Phys Express 14(5):055506. https://doi.org/10.35848/1882-0786/abf4f0

    Google Scholar 

  54. Jiang P, Zhang S, Fan Z et al (2017) Development of multipass MOCVD process for fabricating (Gd, Y)Ba2Cu3O7−δ coated conductors. IEEE T Appl Supercon 27(4):6600405. https://doi.org/10.1109/TASC.2016.2625759

    Google Scholar 

  55. Iijima Y, Adachi Y, Fujita S et al (2015) Development for mass production of homogeneous RE123 coated conductors by hot-wall PLD process on IBAD template technique. IEEE T Appl Supercon 25(3):6604104. https://doi.org/10.1109/TASC.2014.2379923

    Google Scholar 

  56. Lee JH, Lee H, Lee JW et al (2014) RCE-DR, a novel process for coated conductor fabrication with high performance. Supercon Sci Tech 27(4):044018. https://doi.org/10.1088/0953-2048/27/4/044018

    Google Scholar 

  57. Fan Z, Qi Y, Gu H et al (2015) Optimum composition in 10% Zr-added GdYBCO coated conductor for enhanced flux pinning at 30 K. IEEE T Appl Supercon 25(3):6601905c. https://doi.org/10.1109/TASC.2014.2371538

    Google Scholar 

  58. Chen Y, Selvamanickam V, Zhang Y et al (2009) Enhanced flux pinning by BaZrO3 and (Gd,Y)2O3 nanostructures in metal organic chemical vapor deposited GdYBCO high temperature superconductor tapes. Appl Phys Lett 94(6):062513. https://doi.org/10.1063/1.3082037

    Google Scholar 

  59. Zhang Y, Lehner T, Fukushima T et al (2013) Progress in production and performance of second generation (2G) HTS wire for practical applications. In: IEEE international conference on applied superconductivity and electromagnetic devices (ASEMD), Beijing, China

  60. Chen Y, Shi T, Guevara AP et al (2011) Composition effects on the critical current of MOCVD-processed Zr:GdYBCO coated conductors in an applied magnetic field. IEEE T Appl Supercon 21(3):3166–3170

    Google Scholar 

  61. Selvamanickam V, Chen Y, Shi T et al (2013) Enhanced critical currents in (Gd, Y)Ba2Cu3O7–δ superconducting tapes with high levels of Zr addition. Supercon Sci Tech 26(3):035006. https://doi.org/10.1088/0953-2048/26/3/035006

    Google Scholar 

  62. Xu A, Khatri N, Liu Y et al (2015) Broad temperature pinning study of 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O MOCVD coated conductors. IEEE T Appl Supercon 25(3):6603105. https://doi.org/10.1109/TASC.2014.2375231

    Google Scholar 

  63. Llordes A, Palau A, Gazquez J et al (2012) Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nat Mater 11(4):329–336

    Google Scholar 

  64. Coll M, Guzman R, Garces P et al (2014) Size-controlled spontaneously segregated Ba2YTaO6 nanoparticles in YBa2Cu3O7−δ nanocomposites obtained by chemical solution deposition. Supercon Sci Tech 27(4):044008. https://doi.org/10.1088/0953-2048/27/4/044008

    Google Scholar 

  65. Miura M, Maiorov B, Willis JO et al (2013) The effects of density and size of BaMO3 (M = Zr, Nb, Sn) nanoparticles on the vortex glassy and liquid phase in (Y, Gd)Ba2Cu3O7–δ coated conductors. Supercon Sci Tech 26(3):035008. https://doi.org/10.1088/0953-2048/26/3/035008

    Google Scholar 

  66. Gutierrez J, Llordes A, Gazquez J et al (2007) Strong isotropic flux pinning in solution-derived YBa2Cu3O7−δ nanocomposite superconductor films. Nat Mater 6(5):367–373

    Google Scholar 

  67. Engel S, Thersleff T, Huehne R et al (2007) Enhanced flux pinning in YBa2Cu3O7−δ layers by the formation of nanosized BaHfO3 precipitates using the chemical deposition method. Appl Phys Lett 90(10):102505. https://doi.org/10.1063/1.2711761

    Google Scholar 

  68. Erbe M, Haenisch J, Huehne R et al (2015) BaHfO3 artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films. Supercon Sci Tech 28(11):114002. https://doi.org/10.1088/0953-2048/28/11/114002

    Google Scholar 

  69. Ye S, Suo H, Wu Z et al (2011) Preparation of solution-based YBCO films with BaSnO3 particles. Physica C 471(7/8):265–269

    Google Scholar 

  70. Ding FZ, Gu HW, Zhang T et al (2013) Strong flux pinning enhancement in YBa2Cu3O7−δ films by embedded BaZrO3 and BaTiO3 nanoparticles. Chin Phys B 22(7):077401. https://doi.org/10.1088/1674-1056/22/7/077401

    Google Scholar 

  71. Guzman R, Gazquez J, Mundet B et al (2017) Probing localized strain in solution-derived YBa2Cu3O7−δ nanocomposite thin films. Phys Rev Mater 1(2):024801. https://doi.org/10.1103/PhysRevMaterials.1.024801

    Google Scholar 

  72. Rouco V, Palau A, Guzman R et al (2014) Role of twin boundaries on vortex pinning of CSD YBCO nanocomposites. Supercon Sci Tech 27(12):125009. https://doi.org/10.1088/0953-2048/27/12/125009

    Google Scholar 

  73. Chen J, Huang R, Zhou D et al (2022) Improvement of epitaxial growth and flux pinning of MOD-derived YBa2Cu3O7−δ nanocomposites films by self-seeding and multi-element doping strategies. J Eur Ceram Soc 42(14):6542–6550

    Google Scholar 

  74. Obradors X, Puig T, Li Z et al (2018) Epitaxial YBa2Cu3O7−δ nanocomposite films and coated conductors from BaMO3 (M = Zr, Hf) colloidal solutions. Supercon Sci Tech 31(4):044001. https://doi.org/10.1088/1361-6668/aaaad7

    Google Scholar 

  75. Li Z, Coll M, Mundet B et al (2019) Control of nanostructure and pinning properties in solution deposited YBa2Cu3O7−δ nanocomposites with preformed perovskite nanoparticles. Sci Rep 9:5828. https://doi.org/10.1038/s41598-019-42291-x

    Google Scholar 

  76. Díez-Sierra J, Lopez-Dominguez P, Rijckaert H et al (2020) High critical current density and enhanced pinning in superconducting films of YBa2Cu3O7−δ nanocomposites with embedded BaZrO3, BaHfO3, BaTiO3, and SrZrO3 nanocrystals. ACS Appl Nano Mater 3(6):5542–5553

    Google Scholar 

  77. Matsui H, Ootsuka T, Ogiso H et al (2015) Enhancement of critical current density in YBa2Cu3O7−δ films using a semiconductor ion implanter. J Appl Phys 117(4):043911. https://doi.org/10.1063/1.4906782

    Google Scholar 

  78. Sueyoshi T, Sogo T, Nishimura T et al (2016) Angular behaviour of critical current density in YBa2Cu3O7−δ thin films with crossed columnar defects. Supercon Sci Tech 29(6):065023. https://doi.org/10.1088/0953-2048/29/6/065023

    Google Scholar 

  79. Nakashima K, Chikumoto N, Ibi A et al (2007) Effect of ion-irradiation and annealing on superconductive property of PLD prepared YBCO tapes. Physica C 463:665–668

    Google Scholar 

  80. Matsui H, Ootsuka T, Ogiso H et al (2016) Origin of the dimpled critical-current versus magnetic-field-angle relation in YBa2Cu3O7−δ films studied using sub-MeV ion irradiation. Supercon Sci Tech 29(6):065002. https://doi.org/10.1088/0953-2048/29/6/065002

    Google Scholar 

  81. Gu Y, Cai CB, Liu ZY et al (2021) Effect of Ta irradiation on microstructure and current carrying properties of YBCO coated conductors with element doping. J Appl Phys 130(8):0053158. https://doi.org/10.1063/5.0053158

    Google Scholar 

  82. Bergen A, Andersen R, Bauer M et al (2019) Design and in-field testing of the world’s first ReBCO rotor for a 3.6 MW wind generator. Supercon Sci Tech 32(12):125006. https://doi.org/10.1088/1361-6668/ab48d6

    Google Scholar 

  83. Wikus P, Frantz W, Kummerle R et al (2022) Commercial gigahertz-class NMR magnets. Supercon Sci Tech 35(3):033001. https://doi.org/10.1088/1361-6668/ac4951

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000), by the National Natural Science Foundation (Grant No. 52172271), and by the National Key R&D Program of China (Grant No. 2022YFE03150200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Bing Cai.

Rights and permissions

Springer Nature or its licensor (e.g., a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, DX., Chen, J., Zhou, DF. et al. Development of metal-organic deposition-derived second-generation high-temperature superconductor tapes and artificial flux pinning. Adv. Manuf. 11, 523–540 (2023). https://doi.org/10.1007/s40436-023-00447-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-023-00447-z

Keywords

Navigation