Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Metal-based Ionic Liquids and Solid-loaded Catalysts in Fuel Oil Desulfurization: A Review

Author(s): Anqi Niu, Hang Xu*, Qinlin Yuan, Fengmin Wu and Xuefeng Wei

Volume 21, Issue 7, 2024

Published on: 03 August, 2023

Page: [704 - 716] Pages: 13

DOI: 10.2174/1570193X20666230601093152

Price: $65

Abstract

Metal-based ionic liquids (MILs) have the advantages of designability, efficiency, stability, and regenerative cycle and can efficiently convert thiophene and its derivatives, which are important for the production of "ultra-low sulfur" oils. This paper provides an overview of the research progress of MILs in the field of fuel desulfurization, focusing on the current status of MILs and solid-loaded MILs catalysts in extractive desulfurization, oxidative desulfurization, extraction-catalyzed oxidative desulfurization, and catalytic-adsorption desulfurization processes. For MILs, the anion and cation can be altered by design so as to impart specific functions. Loading is one of the effective ways to solidify MILs, and the combination of MILs with different carriers can not only reduce the usage while ensuring the catalytic activity but also improve the reusability of the catalyst. The combination of MILs with specially structured carriers also allows solution-free adsorption and removal of oxidation products. Compared with conventional MILs, polymetallic-based ionic liquids (PMILs) exhibit ultrahigh catalytic activity and are one of the most promising materials available, but are still in their infancy in the field of fuel catalysis, and researchers are needed to enrich the gap in this field. Finally, some problems faced by various types of MILs are pointed out in order to design new functional MILs catalysts with better properties in the future and promote the further development of MILs in the field of fuel catalysis.

Keywords: Metals, ionic liquids, solid-loaded catalysts, desulfurization, dibenzothiophene, fuel.

Graphical Abstract
[1]
Bertleff, B.; Haider, M.S.; Claußnitzer, J.; Korth, W.; Wasserscheid, P.; Jess, A.; Albert, J. Extractive catalytic oxidative denitrogenation of fuels and their promoting effect for desulfurization catalyzed by vanadium substituted heteropolyacids and molecular oxygen. Energy Fuels, 2020, 34(7), 8099-8109.
[http://dx.doi.org/10.1021/acs.energyfuels.0c00864]
[2]
Stanislaus, A.; Marafi, A.; Rana, M.S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal. Today, 2010, 153(1-2), 1-68.
[http://dx.doi.org/10.1016/j.cattod.2010.05.011]
[3]
Zhang, C.; Pan, X.; Wang, F.; Liu, X. Extraction–oxidation desulfurization by pyridinium-based task-specific ionic liquids. Fuel, 2012, 102, 580-584.
[http://dx.doi.org/10.1016/j.fuel.2012.07.040]
[4]
Li, F.; Kou, C.; Sun, Z.; Hao, Y.; Liu, R.; Zhao, D. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid. J. Hazard. Mater., 2012, 205-206, 164-170.
[http://dx.doi.org/10.1016/j.jhazmat.2011.12.054] [PMID: 22230756]
[5]
Eßer, J.; Wasserscheid, P.; Jess, A. Deep desulfurization of oil refinery streams by extraction with ionic liquids. Green Chem., 2004, 6(7), 316-322.
[http://dx.doi.org/10.1039/B407028C]
[6]
Hernández-Maldonado, A.J.; Yang, F.H.; Qi, G.; Yang, R.T. Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites. Appl. Catal. B, 2005, 56(1-2), 111-126.
[http://dx.doi.org/10.1016/j.apcatb.2004.06.023]
[7]
Babich, I. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel, 2003, 82(6), 607-631.
[http://dx.doi.org/10.1016/S0016-2361(02)00324-1]
[8]
Ahmed, I.; Jhung, S.H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks. J. Hazard. Mater., 2016, 301, 259-276.
[http://dx.doi.org/10.1016/j.jhazmat.2015.08.045] [PMID: 26368800]
[9]
Javadli, R.; de Klerk, A. Desulfurization of heavy oil–Oxidative Desulfurization (ODS) as potential upgrading pathway for oil sands derived bitumen. Energy Fuels, 2012, 26(1), 594-602.
[http://dx.doi.org/10.1021/ef201448d]
[10]
Ibrahim, M.H.; Hayyan, M.; Hashim, M.A.; Hayyan, A. The role of ionic liquids in desulfurization of fuels: A review. Renew. Sustain. Energy Rev., 2017, 76, 1534-1549.
[http://dx.doi.org/10.1016/j.rser.2016.11.194]
[11]
Xu, H.; Zhang, J.; Zhang, D.; Guo, Y.; Wu, F. Catalytic oxidation desulfurization of silica-gel-supported ionic liquid [Bmim]CoCl3 coupling oxone. Fuel, 2021, 288, 119655.
[http://dx.doi.org/10.1016/j.fuel.2020.119655]
[12]
Wu, T.Y.; Sun, I.W.; Gung, S.T.; Lin, M.W.; Chen, B.K.; Wang, H.P.; Su, S.G. Effects of cations and anions on transport properties in tetrafluoroborate-based ionic liquids. J. Taiwan Inst. Chem. Eng., 2011, 42(3), 513-522.
[http://dx.doi.org/10.1016/j.jtice.2010.09.006]
[13]
Welton, T. Ionic liquids: A brief history. Biophys. Rev., 2018, 10(3), 691-706.
[http://dx.doi.org/10.1007/s12551-018-0419-2] [PMID: 29700779]
[14]
Du, H.; Zhang, X.; Kuang, Y.; Tan, Z.; Song, L.; Han, X. Catalytic activity and process variables optimization during microwave synthesis of methyl caprylate over various multi-SO3H functionalized ionic liquids. J. Taiwan Inst. Chem. Eng., 2015, 49, 51-57.
[http://dx.doi.org/10.1016/j.jtice.2014.11.023]
[15]
Aghabarari, B. dorostkar, N.; Ghiaci, M.; Amini, S.G.; Rahimi, E.; Martinez-Huerta, M.V. Esterification of fatty acids by new ionic liquids as acid catalysts. J. Taiwan Inst. Chem. Eng., 2014, 45(2), 431-435.
[http://dx.doi.org/10.1016/j.jtice.2013.08.003]
[16]
Kurnia, K.A.; Quental, M.V.; Santos, L.M.N.B.F.; Freire, M.G.; Coutinho, J.A.P. Mutual solubilities between water and non-aromatic sulfonium-, ammonium- and phosphonium-hydrophobic ionic liquids. Phys. Chem. Chem. Phys., 2015, 17(6), 4569-4577.
[http://dx.doi.org/10.1039/C4CP05339G] [PMID: 25583632]
[17]
Liu, F.; Yu, J.; Qazi, A.B.; Zhang, L.; Liu, X. Metal-based ionic liquids in oxidative desulfurization. A critical review Environ. Sci. Technol., 2021, 55(3), 1419-1435.
[http://dx.doi.org/10.1021/acs.est.0c05855] [PMID: 33433212]
[18]
Eyckens, D.J.; Henderson, L.C. A review of solvate ionic liquids: Physical parameters and synthetic applications. Front Chem., 2019, 7, 263.
[http://dx.doi.org/10.3389/fchem.2019.00263] [PMID: 31058138]
[19]
Estager, J.; Holbrey, J.D. Swadźba-Kwaśny, M. Halometallate ionic liquids – revisited. Chem. Soc. Rev., 2014, 43(3), 847-886.
[http://dx.doi.org/10.1039/C3CS60310E] [PMID: 24189615]
[20]
Dai, C.; Zhang, J.; Huang, C.; Lei, Z. Ionic liquids in selective oxidation: Catalysts and solvents. Chem. Rev., 2017, 117(10), 6929-6983.
[http://dx.doi.org/10.1021/acs.chemrev.7b00030] [PMID: 28459547]
[21]
Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib., 2004, 219(1), 93-98.
[http://dx.doi.org/10.1016/j.fluid.2004.02.003]
[22]
Zhao, H. Innovative applications of ionic liquids as green engineering liquids. Chem. Eng. Commun., 2006, 193(12), 1660-1677.
[http://dx.doi.org/10.1080/00986440600586537]
[23]
Li, F.; Liu, R.; -hua Wen, Jin Zhao, D.; Sun, Z.; Liu, Y. Desulfurization of dibenzothiophene by chemical oxidation and solvent extraction with Me3NCH2C6H5Cl·2ZnCl2 ionic liquid. Green Chem., 2009, 11(6), 883-888.
[http://dx.doi.org/10.1039/b815575e]
[24]
Li, M.; Guan, J.; Han, J.; Liang, W.; Wang, K.; Duan, E.; Guo, B. Absorption and oxidation of H2S in triethylamine hydrochloride·ferric chloride ionic liquids. J. Mol. Liq., 2015, 209, 58-61.
[http://dx.doi.org/10.1016/j.molliq.2015.05.002]
[25]
Hao, Y.; Hao, Y.; Ren, J.; Wu, B.; Wang, X.; Zhao, D.; Li, F. Extractive/catalytic oxidative mechanisms over [Hnmp]Cl· x FeCl3 ionic liquids towards the desulfurization of model oils. New J. Chem., 2019, 43(20), 7725-7732.
[http://dx.doi.org/10.1039/C9NJ00691E]
[26]
Bösmann, A.; Datsevich, L.; Jess, A.; Lauter, A.; Schmitz, C.; Wasserscheid, P. Deep desulfurization of diesel fuel by extraction with ionic liquids. Chem. Commun. , 2001, 23(23), 2494-2495.
[http://dx.doi.org/10.1039/b108411a] [PMID: 12240031]
[27]
Dharaskar, S.A.; Wasewar, K.L.; Varma, M.N.; Shende, D.Z. FeCl3 based imidazolium ionic liquids as novel solvents for extractive–oxidative desulfurization of liquid fuels. J. Solution Chem., 2015, 44(3-4), 652-668.
[http://dx.doi.org/10.1007/s10953-015-0310-8]
[28]
Li, E.; Zhu, Y.; Xu, Y.; Zhang, Y.; Yao, P. Desulfurization of gasoline by [C 4, 6, 8 mim]Br/FeCl 3 ILs collaboration with CTAB. Sep. Sci. Technol., 2021, 56(2), 310-321.
[http://dx.doi.org/10.1080/01496395.2020.1713817]
[29]
He, J.; Wu, P.; Lu, L.; Li, H.; Ji, H.; He, M.; Jia, Q.; Hua, M.; Zhu, W.; Li, H. Lattice-refined transition-metal oxides via ball milling for boosted catalytic oxidation performance. ACS Appl. Mater. Interfaces, 2019, 11(40), 36666-36675.
[http://dx.doi.org/10.1021/acsami.9b12063] [PMID: 31525889]
[30]
Lin, Y.; Feng, L.; Li, X.; Chen, Y.; Yin, G.; Zhou, W. Study on ultrasound-assisted oxidative desulfurization for crude oil. Ultrason. Sonochem., 2020, 63, 104946.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104946] [PMID: 31945567]
[31]
Polikarpova, P.; Akopyan, A.; Shigapova, A.; Glotov, A.; Anisimov, A.; Karakhanov, E. Oxidative desulfurization of fuels using heterogeneous catalysts based on MCM-41. Energy Fuels, 2018, 32(10), 10898-10903.
[http://dx.doi.org/10.1021/acs.energyfuels.8b02583]
[32]
Wu, Z.; Ondruschka, B. Ultrasound-assisted oxidative desulfurization of liquid fuels and its industrial application. Ultrason. Sonochem., 2010, 17(6), 1027-1032.
[http://dx.doi.org/10.1016/j.ultsonch.2009.11.005] [PMID: 20022546]
[33]
Fu, J.; Ma, W.; Guo, Y.; Li, X.; Wang, H.; Fu, C.; Zhang, H. The ultra-deep desulfurization of model oil using amphipathic lindqvist-type polyoxometalate-based TiO2 nanofibres as catalysts. Catal. Lett., 2021, 151(7), 2027-2037.
[http://dx.doi.org/10.1007/s10562-020-03432-4]
[34]
Sun, L.; Su, T.; Li, P.; Xu, J.; Chen, N.; Liao, W.; Deng, C.; Ren, W.; Lü, H. Extraction coupled with aerobic oxidative desulfurization of model diesel using a B-type anderson polyoxometalate catalyst in ionic liquids. Catal. Lett., 2019, 149(7), 1888-1893.
[http://dx.doi.org/10.1007/s10562-019-02791-x]
[35]
Yang, C.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. Desulfurization of thiophenes in oils into H2SO4 using molecular oxygen. Appl. Catal. B, 2018, 235, 207-213.
[http://dx.doi.org/10.1016/j.apcatb.2018.04.076]
[36]
Xiong, J.; Zhu, W.; Ding, W.; Yang, L.; Chao, Y.; Li, H.; Zhu, F.; Li, H. Phosphotungstic acid immobilized on ionic liquid-modified SBA-15: Efficient hydrophobic heterogeneous catalyst for oxidative desulfurization in fuel. Ind. Eng. Chem. Res., 2014, 53(51), 19895-19904.
[http://dx.doi.org/10.1021/ie503322a]
[37]
Fang, D.; Wang, Q.; Liu, Y.; Xia, L.; Zang, S. High-efficient oxidation–extraction desulfurization process by ionic liquid 1-butyl-3-methyl-imidazolium trifluoroacetic acid. Energy Fuels, 2014, 28(10), 6677-6682.
[http://dx.doi.org/10.1021/ef501675m]
[38]
Jiang, W.; Zhu, W.; Chang, Y.; Li, H.; Chao, Y.; Xiong, J.; Liu, H.; Yin, S. Oxidation of aromatic sulfur compounds catalyzed by organic hexacyanoferrates in ionic liquids with a low concentration of H2O2 as an oxidant. Energy Fuels, 2014, 28(4), 2754-2760.
[http://dx.doi.org/10.1021/ef500082y]
[39]
Jiang, W.; Zhu, W.; Chang, Y.; Chao, Y.; Yin, S.; Liu, H.; Zhu, F.; Li, H. Ionic liquid extraction and catalytic oxidative desulfurization of fuels using dialkylpiperidinium tetrachloroferrates catalysts. Chem. Eng. J., 2014, 250, 48-54.
[http://dx.doi.org/10.1016/j.cej.2014.03.074]
[40]
Jiang, W.; Li, H.; Yin, S.; Wang, X.; Liu, W.; Liu, H.; Zhu, W.; Li, H. Hexacyanoferrate-based ionic liquids as Fenton-like catalysts for deep oxidative desulfurization of fuels. Appl. Organomet. Chem., 2016, 30(9), 753-758.
[http://dx.doi.org/10.1002/aoc.3500]
[41]
Jiang, W.; Zhu, W.; Li, H. xiong, J.; Xun, S.; Zhao, Z.; Wang, Q. Deep oxidative desulfurization of fuels catalyzed by magnetic Fenton-like hybrid catalysts in ionic liquids. RSC Advances, 2013, 3(7), 2355-2361.
[http://dx.doi.org/10.1039/c2ra22227b]
[42]
Wang, T.; Yu, W.; Li, T.; Wang, Y.; Tan, J.; Hu, B.; Nie, L. Synthesis of novel magnetic ionic liquids as high efficiency catalysts for extraction-catalytic oxidative desulfurization in fuel oil. New J. Chem., 2019, 43(48), 19232-19241.
[http://dx.doi.org/10.1039/C9NJ04015C]
[43]
Qian, W.; Tan, X.; Su, Q.; Cheng, W.; Xu, F.; Dong, L.; Zhang, S. Transesterification of isosorbide with dimethyl carbonate catalyzed by task‐specific ionic liquids. ChemSusChem, 2019, 12(6), 1169-1178.
[http://dx.doi.org/10.1002/cssc.201802572] [PMID: 30618199]
[44]
Ren, T.J.; Zhang, J.; Hu, Y.H.; Li, J.P.; Liu, M.S.; Zhao, D.S. Extractive desulfurization of fuel oil with metal-based ionic liquids. Chin. Chem. Lett., 2015, 26(9), 1169-1173.
[http://dx.doi.org/10.1016/j.cclet.2015.05.023]
[45]
Chen, X.; Guan, Y.; Abdeltawab, A.A.; Al-Deyab, S.S.; Yuan, X.; Wang, C.; Yu, G. Using functional acidic ionic liquids as both extractant and catalyst in oxidative desulfurization of diesel fuel: An investigation of real feedstock. Fuel, 2015, 146, 6-12.
[http://dx.doi.org/10.1016/j.fuel.2014.12.091]
[46]
Lü, H.; Deng, C.; Ren, W.; Yang, X. Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids. Fuel Process. Technol., 2014, 119, 87-91.
[http://dx.doi.org/10.1016/j.fuproc.2013.10.023]
[47]
Zhu, W.; Zhang, J.; Li, H.; Chao, Y.; Jiang, W.; Yin, S.; Liu, H. Fenton-like ionic liquids/H 2O2 system: One-pot extraction combined with oxidation desulfurization of fuel. RSC Advances, 2012, 2(2), 658-664.
[http://dx.doi.org/10.1039/C1RA00163A]
[48]
Li, H.; Zhu, W.; Wang, Y.; Zhang, J.; Lu, J.; Yan, Y. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride. Green Chem., 2009, 11(6), 810-815.
[http://dx.doi.org/10.1039/b901127g]
[49]
Yang, H.; Jiang, B.; Sun, Y.; Hao, L.; Huang, Z.; Zhang, L. Synthesis and oxidative desulfurization of novel lactam-based Brønsted-Lewis acidic ionic liquids. Chem. Eng. J., 2016, 306, 131-138.
[http://dx.doi.org/10.1016/j.cej.2016.07.044]
[50]
Chen, X.; Guo, H.; Abdeltawab, A.A.; Guan, Y.; Al-Deyab, S.S.; Yu, G.; Yu, L. Brønsted–lewis acidic ionic liquids and application in oxidative desulfurization of diesel fuel. Energy Fuels, 2015, 29(5), 2998-3003.
[http://dx.doi.org/10.1021/acs.energyfuels.5b00172]
[51]
Chen, X.; Song, D.; Asumana, C.; Yu, G. Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride. J. Mol. Catal. Chem., 2012, 359, 8-13.
[http://dx.doi.org/10.1016/j.molcata.2012.03.014]
[52]
Andevary, H.H.; Akbari, A.; Omidkhah, M. High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim]FeCl4 as catalyst/extractant. Fuel Process. Technol., 2019, 185, 8-17.
[http://dx.doi.org/10.1016/j.fuproc.2018.11.014]
[53]
Wang, J.; Zhang, L.; Sun, Y.; Jiang, B.; Chen, Y.; Gao, X.; Yang, H. Deep catalytic oxidative desulfurization of fuels by novel Lewis acidic ionic liquids. Fuel Process. Technol., 2018, 177, 81-88.
[http://dx.doi.org/10.1016/j.fuproc.2018.04.013]
[54]
Zhang, L.; Wang, J.; Sun, Y.; Jiang, B.; Yang, H. Deep oxidative desulfurization of fuels by superbase-derived Lewis acidic ionic liquids. Chem. Eng. J., 2017, 328, 445-453.
[http://dx.doi.org/10.1016/j.cej.2017.07.060]
[55]
Wang, C.; Chen, Z.; Zhu, W.; Wu, P.; Jiang, W.; Zhang, M.; Li, H.; Zhu, W.; Li, H. One-pot extraction and oxidative desulfurization of fuels with molecular oxygen in low-cost metal-based ionic liquids. Energy Fuels, 2017, 31(2), 1376-1382.
[http://dx.doi.org/10.1021/acs.energyfuels.6b02624]
[56]
Zhu, W.; Wu, P.; Yang, L.; Chang, Y.; Chao, Y.; Li, H.; Jiang, Y.; Jiang, W.; Xun, S. Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chem. Eng. J., 2013, 229, 250-256.
[http://dx.doi.org/10.1016/j.cej.2013.05.115]
[57]
Guo, Y.F.; Gao, C.Y.; Yang, K.G.; Wang, Z.J.; Duan, Y.H.; Feng, S.X.; Xu, H. Mild and deep oxidative extraction desulfurization using dual-function imidazolium peroxydisulfate ionic liquid. Energy Fuels, 2019, 33(11), 10728-10733.
[http://dx.doi.org/10.1021/acs.energyfuels.9b02603]
[58]
Taghizadeh, M.; Mehrvarz, E.; Taghipour, A. Polyoxometalate as an effective catalyst for the oxidative desulfurization of liquid fuels: A critical review. Rev. Chem. Eng., 2020, 36(7), 831-858.
[http://dx.doi.org/10.1515/revce-2018-0058]
[59]
Haghighi, M.; Gooneh-Farahani, S. Insights to the oxidative desulfurization process of fossil fuels over organic and inorganic heterogeneous catalysts: Advantages and issues. Environ. Sci. Pollut. Res. Int., 2020, 27(32), 39923-39945.
[http://dx.doi.org/10.1007/s11356-020-10310-4] [PMID: 32789628]
[60]
Romanovsky, B.V.; Tarkhanova, I.G. Supported ionic liquids in catalysis. Russ. Chem. Rev., 2017, 86(5), 444-458.
[http://dx.doi.org/10.1070/RCR4666]
[61]
Azimzadeh, H.; Akbari, A.; Omidkhah, M.R. Catalytic oxidative desulfurization performance of immobilized NMP.FeCl3 ionic liquid on γ-Al2O3 support. Chem. Eng. J., 2017, 320, 189-200.
[http://dx.doi.org/10.1016/j.cej.2017.03.027]
[62]
Valkenberg, M.H.; deCastro, C.; Hölderich, W.F. Immobilisation of chloroaluminate ionic liquids on silica materials. Top. Catal., 2000, 14(1/4), 139-144.
[http://dx.doi.org/10.1023/A:1009023520210]
[63]
Wolny, A.; Chrobok, A. Silica-based supported ionic liquid-like phases as heterogeneous catalysts. Molecules, 2022, 27(18), 5900.
[http://dx.doi.org/10.3390/molecules27185900] [PMID: 36144636]
[64]
Li, J.; Liu, Z.; Hu, G.; Gao, R.; Zhang, R.; Zhao, J. Heteropolyacids supported on micro/mesoporous materials PMoW@HKUST-1@ZSM-5-MCM-41: Effective catalyst for oxidative desulfurization with oxygen. Molecular Catalysis, 2021, 504, 111419.
[http://dx.doi.org/10.1016/j.mcat.2021.111419]
[65]
Sun, X.; Xu, D.; Dai, P.; Liu, X.; Tan, F.; Guo, Q. Efficient degradation of methyl orange in water via both radical and non-radical pathways using Fe-Co bimetal-doped MCM-41 as peroxymonosulfate activator. Chem. Eng. J., 2020, 402, 125881.
[http://dx.doi.org/10.1016/j.cej.2020.125881]
[66]
Sterczyńska, A.; Deryło-Marczewska, A.; Zienkiewicz-Strzałka, M.; Śliwińska-Bartkowiak, M.; Domin, K. Surface properties of Al-functionalized mesoporous MCM-41 and the melting behavior of water in Al-MCM-41 nanopores. Langmuir, 2017, 33(42), 11203-11216.
[http://dx.doi.org/10.1021/acs.langmuir.7b02172] [PMID: 28851218]
[67]
Xiong, J.; Zhu, W.; Li, H.; Xu, Y.; Jiang, W.; Xun, S.; Liu, H.; Zhao, Z. Immobilized fenton-like ionic liquid: Catalytic performance for oxidative desulfurization. AIChE J., 2013, 59(12), 4696-4704.
[http://dx.doi.org/10.1002/aic.14197]
[68]
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350), 548-552.
[http://dx.doi.org/10.1126/science.279.5350.548] [PMID: 9438845]
[69]
Ding, W.; Zhu, W.; Xiong, J.; Yang, L.; Wei, A.; Zhang, M.; Li, H. Novel heterogeneous iron-based redox ionic liquid supported on SBA-15 for deep oxidative desulfurization of fuels. Chem. Eng. J., 2015, 266, 213-221.
[http://dx.doi.org/10.1016/j.cej.2014.12.040]
[70]
Xun, S.; Zhu, W.; Zheng, D.; Zhang, L.; Liu, H.; Yin, S.; Zhang, M.; Li, H. Synthesis of metal-based ionic liquid supported catalyst and its application in catalytic oxidative desulfurization of fuels. Fuel, 2014, 136, 358-365.
[http://dx.doi.org/10.1016/j.fuel.2014.07.029]
[71]
Haji Andevary, H.; Akbari, A.; Rajabi, Z.; Omidkhah, M. Towards a room temperature oxidative desulfurization of refractory compounds over 1-octyl-3-methylimidazolium tetrachloroferrates/silica gel: The beneficial effects of immobilization. Process Saf. Environ. Prot., 2020, 136, 343-352.
[http://dx.doi.org/10.1016/j.psep.2020.02.009]
[72]
Terranova, U.; Bowler, D.R. Adsorption of catechol on TiO 2 rutile (100): A density functional theory investigation. J. Phys. Chem. C, 2010, 114(14), 6491-6495.
[http://dx.doi.org/10.1021/jp911214w]
[73]
Liu, G.; Rodriguez, J.A.; Chang, Z.; Hrbek, J.; González, L. Adsorption of methanethiol on stoichiometric and defective TiO2 (110) surfaces: A combined experimental and theoretical study. J. Phys. Chem. B, 2002, 106(38), 9883-9891.
[http://dx.doi.org/10.1021/jp021155r]
[74]
Xun, S.; Zhu, W.; Zheng, D.; Li, H.; Jiang, W.; Zhang, M.; Qin, Y.; Zhao, Z.; Li, H. Supported ionic liquid [Bmim]FeCl4/Am TiO2 as an efficient catalyst for the catalytic oxidative desulfurization of fuels. RSC Advances, 2015, 5(54), 43528-43536.
[http://dx.doi.org/10.1039/C5RA00999E]
[75]
Cruz, P.; Granados, E.A.; Fajardo, M.; del Hierro, I.; Pérez, Y. Heterogeneous oxidative desulfurization catalysed by titanium grafted mesoporous silica nanoparticles containing tethered hydrophobic ionic liquid: A dual activation mechanism. Appl. Catal. A Gen., 2019, 587, 117241.
[http://dx.doi.org/10.1016/j.apcata.2019.117241]
[76]
Niu, A.; Xu, H.; Yuan, Q.; Wu, F.; Wei, X. Lewis ionic liquid-loaded Fe3O4@SiO2 magnetic catalytic microspheres coupled with persulfate for catalytic oxidative desulfurization. New J. Chem., 2023, 47(3), 1216-1225.
[http://dx.doi.org/10.1039/D2NJ05688G]
[77]
Xu, H.; Wang, S.; Wu, F.; Yuan, Q.; Guo, Y.; Zhang, Y.; Wei, X.; Zhang, J. A fully-organic polymerization carrier calix[4]resorcin-arene supported cobalt ionic liquid catalyst with oxone for desulfurization. Fuel, 2022, 318, 123670.
[http://dx.doi.org/10.1016/j.fuel.2022.123670]
[78]
Yuan, J.; Antonietti, M. Poly(ionic liquid)s: Polymers expanding classical property profiles. Polymer , 2011, 52(7), 1469-1482.
[http://dx.doi.org/10.1016/j.polymer.2011.01.043]
[79]
Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci., 2013, 38(7), 1009-1036.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.04.002]
[80]
Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci., 2009, 34(5), 431-448.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.12.001]
[81]
Mecerreyes, D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci., 2011, 36(12), 1629-1648.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.05.007]
[82]
Qian, W.; Texter, J.; Yan, F. Frontiers in poly(ionic liquid)s: Syntheses and applications. Chem. Soc. Rev., 2017, 46(4), 1124-1159.
[http://dx.doi.org/10.1039/C6CS00620E] [PMID: 28180218]
[83]
Xu, H.; Niu, A.; Yang, Z.; Wu, F.; Guo, X.; Wei, X.; Zhang, J. Preparation of cobalt-containing polyvinylimidazole ionic liquid catalyst and coupling with persulfate for room-temperature ultra-deep desulfurization. Fuel, 2023, 334, 126762.
[http://dx.doi.org/10.1016/j.fuel.2022.126762]
[84]
Zhang, S.Y.; Zhuang, Q.; Zhang, M.; Wang, H.; Gao, Z.; Sun, J.K.; Yuan, J. Poly(ionic liquid) composites. Chem. Soc. Rev., 2020, 49(6), 1726-1755.
[http://dx.doi.org/10.1039/C8CS00938D] [PMID: 32096815]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy