Skip to main content

Advertisement

Log in

Detection of biological contamination protozoa in drinking water using surface plasmon resonance-based technique

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Water is one of the fundamental needs for human life on earth. Different kinds of contaminants that exist in the drinking water may cause serious health issues, affect body organs, or may cause mortality. One of the main sources of biological contaminants in the water is protozoan parasites, which are normally transmitted through the oral-fecal route. Two frequently water born protozoan parasites are C. parvum and G. lamblia. Both of these parasites have different values of refractive index and size. Using these biophysical parameters, the new detection system may be developed for real-time and on-site measurement. In this paper surface plasmon resonance (SPR) technique is utilized for theoretical investigation of biological contamination protozoa in drinking. Based on angle interrogation, the Kretschmann configuration is used to elaborate the concept of the setup. The performance is analysed on the basis of incident light wavelength in visible region and radiative properties of a multi-layered structure are studied using the transfer Metrix method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nemati, S., Shalileh, F., Mirjalali, H., Omidfar, K.: Toward waterborne protozoa detection using sensing technologies. Front. Microbiol. 14, 363 (2023)

    Article  Google Scholar 

  2. Erickson, T.A., Nijjar, R., Kipper, M.J., Lear, K.L.: Characterization of plasma-enhanced teflon AF for sensing benzene, toluene, and xylenes in water with near-IR surface plasmon resonance. Talanta 119, 151–155 (2014)

    Article  Google Scholar 

  3. Sharma, S., Bhattacharya, A.J.A.W.S.: Drinking water contamination and treatment techniques. Appl. Water Sci. 7(3), 1043–1067 (2017)

    Article  ADS  Google Scholar 

  4. Chin, L. K., Ayi, T. C., Yap, P. H., & Liu, A. Q.: Null-method in immersion refractometry for biophysical measurement of cryptosporidium and giardia lamblia. In: 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2011, pp. 707–709. MicroTAS 2011 (2011).

  5. Kang, C., Lee, S., Park, T., Sim, S.: Performance enhancement of real-time detection of protozoan parasite, Cryptosporidium oocyst by a modified surface plasmon resonance (SPR) biosensor. Enzyme Microb. Technol. 39, 387–390 (2006). https://doi.org/10.1016/j.enzmictec.2005.11.039

    Article  Google Scholar 

  6. Rajan, G.: Introduction to optical fiber sensors. In: Optical Fiber Sensors, pp. 1–12. CRC Press, Boca Raton (2017)

  7. Singh, S.K., Srivastava, A., Dwivedi, L.K.: A Theoretical analysis of Milk adulteration/contamination detection in camel, buffalo and cow milk using SPR Technique. J. Phys. Confer. Ser. 2426(1), 012040 (2023)

    Article  Google Scholar 

  8. Srivastava, A., Prajapati, Y.K.: Surface plasmon resonance (SPR)-based biosensor using MXene as a BRE layer and magnesium oxide (MgO) as an adhesion layer. J. Mater. Sci. Mater. Electr. 1–10 (2021)

  9. Liu, Z., Lu, F., Jiang, L., Lin, W., Zheng, Z.: Tunable Goos–Hänchen shift surface plasmon resonance sensor based on graphene-hBN heterostructure. Biosensors 11(6), 201 (2021)

    Article  Google Scholar 

  10. Shi, J., Huan, Y., Hong, M., Xu, R., Yang, P., Zhang, Z., et al.: Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal–semiconductor transition. ACS Nano 13(7), 8442–8451 (2019)

    Article  Google Scholar 

  11. Minev, N., Buchkov, K., Dikov, H., Videva, V., Avramova, I., Rafialov, P., et al.: Properties analysis of 2D PtSe2 layers grown by thermally assisted conversion of chemical vapor deposition. In: 2021 XXX International Scientific Conference Electronics (ET), pp 1–4. IEEE (2021).

  12. Pal, S., Verma, A., Saini, J.P., Prajapati, Y.K.: Sensitivity enhancement using silicon-black phosphorus-TDMC coated surface plasmon resonance biosensor. IET Optoelectron. 13(4), 196–201 (2019)

    Article  Google Scholar 

  13. Lahav, A., Auslender, M., Abdulhalim, I.: Sensitivity enhancement of guided-wave surface- plasmon resonance sensors. Opt. Lett. 33(21), 2539–2541 (2008)

    Article  ADS  Google Scholar 

  14. Ouyang, Q., Zeng, S., Dinh, X.Q., Coquet, P., Yong, K.T.: Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Eng. 140, 134–139 (2016)

    Article  Google Scholar 

  15. Suvarnaphaet, P., Pechprasarn, S.: Graphene-based materials for biosensors:a review. Sensors 17(10), 2161 (2017)

    Article  Google Scholar 

  16. Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  Google Scholar 

  17. Srivastava, A., Verma, A., & Prajapati, Y.K.: Effect of 2D, TMD, perovskite, and 2D transition metal carbide/nitride materials on performance parameters of SPR biosensor. In: Handbook of Nanomaterials for Sensing Applications, pp. 57–90. Elsevier (2021).

  18. Canning, J., Qian, J., Cook, K.: Large dynamic range SPR measurements using a ZnSe prism. Photonic Sens. 5, 278–283 (2015)

    Article  ADS  Google Scholar 

  19. Srivastava, A., Prajapati, Y.K.: Effect of sulfosalt and polymers on performance parameter of SPR biosensor. Opt. Quant. Electron. 52(10), 440 (2020)

    Article  Google Scholar 

  20. Pandey, P.S., Raghuwanshi, S.K., Kumar, S.: Recent advances in two-dimensional materials-based Kretschmann configuration for SPR sensors: a review. IEEE Sens. J. 22(2), 1069–1080 (2021)

    Article  ADS  Google Scholar 

  21. Pandey, P. S., Raghuwanshi, S. K., Singh, R., Kumar, M., Kumar, S.: Performance enhancement of surface plasmon resonance biosensor based on prism with Kretschmann configuration assisted by 2D materials. In: 2D Photonic Materials and Devices VI, Vol. 12423, pp. 52–58. SPIE (2023)

  22. Pandey, P. S., Raghuwanshi, S. K., Awasthi, S., Shadab, A., Ansari, M. T. I., Kumar, S.: Sensitivity enhancement of the surface plasmon resonance sensor with nobel structure based on PtSe2 and 2D materials. In: Quantum Sensing and Nano Electronics and Photonics XIX, Vol. 12430, pp. 298–303. SPIE (2023)

  23. Pandey, P.S., Raghuwanshi, S.K., Singh, R., Kumar, S.: Surface plasmon resonance biosensor chip for human blood groups identification assisted with silver-chromium-hafnium oxide. Magnetochemistry 9(1), 21 (2023)

    Article  Google Scholar 

  24. Pandey, P.S., Raghuwanshi, S.K.: Sensitivity enhancement of surface plasmon resonance (SPR) sensor assisted by BlueP/MoS 2 based composite heterostructure. IEEE Access 10, 116152–116159 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akash Srivastava.

Ethics declarations

Conflict of interest

The author has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Srivastava, A., Dwivedi, L.K. et al. Detection of biological contamination protozoa in drinking water using surface plasmon resonance-based technique. Opt Rev 30, 478–484 (2023). https://doi.org/10.1007/s10043-023-00823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00823-x

Keywords

Navigation