Skip to main content
Log in

Cytotoxic Activity of a Cold Atmospheric Plasma Jet in Relation to a 3D Cell Model of Human Breast Cancer

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The treatment of solid tumors by a cold atmospheric plasma (CAP) jet is an innovative approach that has been actively developed only in the last decade. As a result, studies aimed at identifying the conditions for selective effect on tumor cells, including as parts of 3D models that mimic malignant neoplasms are pertinent. It is known that the main cytotoxic effects of a CAP are caused by reactive oxygen and nitrogen species in the plasma jet. Their availability for cells in classical 2D and 3D models of cell cultivation may be different. Here, we used multicellular spheroids of MCF7–EGFR cells with overexpression of the epidermal growth-factor receptor (EGFR), cells of parental breast adenocarcinoma MCF7 cell line, and nontransformed human breast cells MCF10A. Irradiation of MCF7–EGFR spheroids induced destruction of multicellular 3D structures into individual cells and activated cell death. It has been shown that the cells of irradiated spheroids undergo phagocytosis by activated macrophages. Comparison of a direct CAP irradiation of MCF7–EGFR spheroids and indirect treatment with plasma-activated medium (PAM) revealed a higher content of reactive oxygen and nitrogen species in spheroid cells cultivated in the irradiated medium. It produced a higher cytotoxic effect than direct irradiation. It has been shown that the cytotoxic properties of PAM are better preserved when such a medium is stored at 4° than at –20°C. Thus, the death of tumor cells in spheroids was more effective with addition of the culture medium irradiated with a CAP than direct irradiation of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Arfin, S., Jha, N.K., Jha, S.K., Kesari, K.K., Ruokolai-nen, J., Roychoudhury, S., Rathi, B., and Kumar, D., Oxidative stress in cancer cell metabolism, Antioxidants, 2021, vol. 10, p. 642. https://doi.org/10.3390/antiox10050642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Attri, P., Kumar, N., Park, J.H., Yadav, D.K., Choi, S., Uhm, H.S., Kim, I.T., Choi, E.H., and Lee, W., Influence of reactive species on the modification of biomolecules generated from the soft plasma, Sci. Rep., 2015, vol. 5, p. 8221. https://doi.org/10.1038/srep08221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bagamanshina, A.V., Troitskaya, O.S., Nushtaeva, A.A., Yunusova, A.Y., Starykovych, M.O., Kuligina, E.V., Kit, Y.Y., Richter, M., Wohlfromm, F., Kähne, T., Lavrik, I.N., Richter, V.A., and Koval, O.A., Cytotoxic and antitumor activity of lactaptin in combination with autophagy inducers and inhibitors, BioMed. Res. Int., 2019, vol. 2019. https://doi.org/10.1155/2019/4087160

  4. Basu, P., Taghavi, K., H,u, S.-Y., Mogri, S., and Joshi, S., Management of cervical premalignant lesions, Curr. Probl. Cancer, vol. 42, p. 129. https://doi.org/10.1016/j.currproblcancer.2018.01.010

  5. Boehm, D., Heslin, C., Cullen, P.J., and Bourke, P., Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma, Sci. Rep., 2016, vol. 6, p. 21464. https://doi.org/10.1038/srep21464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chauvin, J., Judee, F., Merbahi, N., and Vicendo, P., Effects of plasma activated medium on head and neck FaDu cancerous cells: comparison of 3D and 2D response, ACAMC, 2018, vol. 18, p. 776. https://doi.org/10.2174/1871520617666170801111055

    Article  CAS  Google Scholar 

  7. Colombo, E. and Cattaneo, M.G., Multicellular 3D models to study tumour-stroma interactions, IJMS, 2021, vol. 22, p. 1633. https://doi.org/10.3390/ijms22041633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai, X., Bazaka, K., Richard, D.J., Thompson, E.W., and Ostrikov, K., The emerging role of gas plasma in oncotherapy, Trends Biotechnol., 2018, vol. 36, p. 1183. https://doi.org/10.1016/j.tibtech.2018.06.010

    Article  CAS  PubMed  Google Scholar 

  9. Domonkos, M., Tichá, P., Trejbal, J., and Demo, P., Applications of cold atmospheric pressure plasma technology in medicine, Agric. Food Industry, Appl. Sci., 2021, vol. 11, p. 4809. https://doi.org/10.3390/app11114809

    Article  CAS  Google Scholar 

  10. Ferreira, L.P., Gaspar, V.M., and Mano, J.F., Design of spherically structured 3D in vitro tumor models—advances and prospects, Acta Biomat., 2018, vol. 75, p. 11. https://doi.org/10.1016/j.actbio.2018.05.034

    Article  CAS  Google Scholar 

  11. Graves, D.B., The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology, J. Phys. D: Appl. Phys., 2012, vol. 45, p. 263001. https://doi.org/10.1088/0022-3727/45/26/263001

    Article  CAS  Google Scholar 

  12. Gugin, P.P., Zakrevsky, D.E., Milakhina, E.V., Biryukov, M.M., Koval, O.A., Patrakova, E.A., and Shveygert, I.V., Optimization of cold plasma jet parameters under sinusoidal voltage excitation for effective suppression of cancer cell viability, Medtekhnika, 2022 (in press).

  13. Judée, F., Fongia, C., Ducommun, B., Yousfi, M., Lobjois, V., and Merbahi, N., Short and long time effects of low temperature plasma activated media on 3D multicellular tumor spheroids, Sci. Rep., 2016, vol. 6, p. 21421. https://doi.org/10.1038/srep21421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klinkhammer, C., Verlackt, C., Smiłowicz, D., Kogelheide, F., Bogaerts, A., Metzler-Nolte, N., Stapel-mann, K., Havenith, M., and Lackmann, J.-W., Elucidation of plasma-induced chemical modifications on glutathione and glutathione disulphide, Sci. Rep., 2017, vol. 7, p. 13828. https://doi.org/10.1038/s41598-017-13041-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laschke, M.W. and Menger, M.D., Spheroids as vascularization units: from angiogenesis research to tissue engineering applications, Biotechnol. Adv., 2017, vol. 35, p. 782. https://doi.org/10.1016/j.biotechadv.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  16. Metelmann, H.-R., Nedrelow, D.S., Seebauer, C., Schuster, M., von Woedtke, T., Weltmann, K.D., Kindler, S., Metelmann, P.H., Finkelstein, S.E., Von Hoff, D.D., and Podmelle, F., Head and neck cancer treatment and physical plasma, Clin. Plasma Med., 2015, vol. 3, p. 17. https://doi.org/10.1016/j.cpme.2015.02.001

    Article  Google Scholar 

  17. Nushtaeva, A.A., Savinkova, M.M., Ermakov, M.S., Varlamov, M.E., Novak, D.D., Richter, V.A., and Koval, O.A., Breast cancer cells in 3D model alters their sensitivity to hormonal and growth factors, Cell Tissue Biol., 2022, vol. 16, p. 555. https://doi.org/10.1134/S1990519X22060050

    Article  CAS  Google Scholar 

  18. Qu, Y., Han, B., Yu, Y., Yao, W., Bose, S., Karlan, B.Y., Giuliano, A.E., and Cui, X., Evaluation of MCF10A as a reliable model for normal human mammary epithelial cells, PLoS One, 2015, vol. 10, p. e0131285. https://doi.org/10.1371/journal.pone.0131285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salinas-Vera, Y.M., Valdés, J., Hidalgo-Miranda, A., Cisneros-Villanueva, M., Marchat, L.A., Nuñez-Olvera, S.I., Ramos-Payán, R., Pérez-Plasencia, C., Arriaga-Pizano, L.A., Prieto-Chávez, J.L., and López-Camarillo, C., Three-dimensional organotypic cultures reshape the microRNAs transcriptional program in breast cancer cells, Cancers, 2022, vol. 14, p. 2490. https://doi.org/10.3390/cancers14102490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schweigert, I., Alexandrov, A., Zakrevsky, D., Milakhina, E., Patrakova, E., Troitskaya, O., Birykov, M., and Koval, O., Mismatch of frequencies of ac voltage and streamers propagation in cold atmospheric plasma jet for typical regimes of cancer cell treatment, J. Phys.: Conf. Ser., 2021, vol. 2100, p. 012020. https://doi.org/10.1088/1742-6596/2100/1/012020

    Article  Google Scholar 

  21. Schweigert, I., Zakrevsky, D., Gugin, P., Yelak, E., Golubitskaya, E., Troitskaya, O., and Koval, O., Interaction of cold atmospheric argon and helium plasma jets with bio-target with grounded substrate beneath, Appl. Sci., 2019, vol. 9, p. 4528. https://doi.org/10.3390/app9214528

    Article  CAS  Google Scholar 

  22. Semmler, M.L., Bekeschus, S., Schäfer, M., Bernhardt, T., Fischer, T., Witzke, K., Seebauer, C., Rebl, H., Grambow, E., Vollmar, B., Nebe, J.B., Metelmann, H.-R., von Woedtke, T., Emmert, S., and Boeckmann, L., Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (CAP) in cancer treatment, Cancers, 2020, vol. 12, p. 269. https://doi.org/10.3390/cancers12020269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shashurin, A., Stepp, M.A., Hawley, T.S., Pal-Ghosh, S., Brieda, L., Bronnikov, S., Jurjus, R.A., and Keidar, M., Influence of Cold plasma atmospheric jet on surface integrin expression of living cells: influence of cold plasma atmospheric jet on surface integrin expression of living cells, Plasma Processes Polym., 2010, vol. 7, p. 294. https://doi.org/10.1002/ppap.200900086

    Article  CAS  Google Scholar 

  24. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomatara, I., Jemal, A., and Bray, F., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA A Cancer J. Clin., 2021, vol. 71, p. 209. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  25. Tanaka, H., Bekeschus, S., Yan, D., Hori, M., Keidar, M., and Laroussi, M., Plasma-treated solutions (PTS) in cancer therapy, Cancers, 2021, vol. 13, p. 1737. https://doi.org/10.3390/cancers13071737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Troitskaya, O., Golubitskaya, E., Biryukov, M., Varlamov, M., Gugin, P., Milakhina, E., Richter, V., Schweigert, I., Zakrevsky, D., and Koval, O., Non-thermal plasma application in tumor-bearing mice induces increase of serum HMGB1, Int. J. Mol. Sci., 2020, vol. 21, p. E5128. https://doi.org/10.3390/ijms21145128

    Article  CAS  Google Scholar 

  27. Troitskaya, O., Novak, D., Nushtaeva, A., Savinkova, M., Varlamov, M., Ermakov, M., Richter, V., and Koval, O., EGFR transgene stimulates spontaneous formation of MCF7 breast cancer cells spheroids with partly loss of HER3 receptor, IJMS, 2021, vol. 22, p. 12937. https://doi.org/10.3390/ijms222312937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vandamme, M., Robert, E., Lerondel, S., Sarron, V., Ries, D., Dozias, S., Sobilo, J., Gosset, D., Kieda, C., Legrain, B., Pouvesle, J.-M., and Pape, A.L., ROS implication in a new antitumor strategy based on non-thermal plasma, Int. J. Cancer, 2012, vol. 130, p. 2185. https://doi.org/10.1002/ijc.26252

    Article  CAS  PubMed  Google Scholar 

  29. Verjans, E.-T., Doijen, J., Luyten, W., Landuyt, B., and Schoofs, L., Three-dimensional cell culture models for anticancer drug screening: worth the effort?, J. Cell Physiol., vol. 233, p. 2993. https://doi.org/10.1002/jcp.26052

  30. Wanigasekara, J., Barcia, C., Cullen, P.J., Tiwari, B., and Curtin, J.F., Plasma induced reactive oxygen species-dependent cytotoxicity in glioblastoma 3D tumourspheres, Plasma Processes Polym., 2022, vol. 19, p. 2100157. https://doi.org/10.1002/ppap.202100157

    Article  CAS  Google Scholar 

  31. Wiegand, C., Fink, S., Beier, O., Horn, K., Pfuch, A., Schimanski, A., Grünler, B., Hipler, U.-C., and Elsner, P., Dose- and time-dependent cellular effects of cold atmospheric pressure plasma evaluated in 3D skin models, Skin Pharmacol. Physiol., 2016, vol. 29, p. 257. https://doi.org/10.1159/000450889

    Article  CAS  PubMed  Google Scholar 

  32. Xu, D., Wang, B., Xu, Y., Chen, Z., Cui, Q., Yang, Y., Chen, H., and Kong, M.G., Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures, Sci. Rep., 2016, vol. 6, p. 27872. https://doi.org/10.1038/srep27872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yazdani, M., Concerns in the application of fluorescent probes DCDHF-DA, DHR 123 and DHE to measure reactive oxygen species in vitro, Toxicol. In Vitro, 2015, vol. 30, p. 578. https://doi.org/10.1016/j.tiv.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  34. Yousfi, M., Merbahi, N., Pathak, A., and Eichwald, O., Low-temperature plasmas at atmospheric pressure: toward new pharmaceutical treatments in medicine, Fundam. Clin. Pharmacol., 2014, vol. 28, p. 123. https://doi.org/10.1111/fcp.12018

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-34-90021), and studies on optimizing the specific effect of a CAP in adhesive cell cultures were supported of the Russian Science Foundation (project no. 19-19-00255-P).

Author information

Authors and Affiliations

Authors

Contributions

E.A. Patrakova and M.M. Biryukov made an equal contribution.

Corresponding author

Correspondence to M. M. Biryukov.

Ethics declarations

The authors declare that they have no conflicts of interest. Experiments involving animals or human beings have not been performed.

Additional information

Abbreviations: RNS—reactive nitrogen species; ROS—reactive oxygen species; GMS—grounded metal substrate; MTT reagent—3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide; BC—breast cancer; PAM—plasma-activated medium; UVR—ultraviolet radiation; CAP—cold atmospheric plasma; EGFR—epidermal growth-factor receptor; H2DCFDA—2',7'-dichlorodihydrofluorescein diacetate; PMA—phorbol-12-myristate 13-acetate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patrakova, E.A., Biryukov, M.M., Troitskaya, O.S. et al. Cytotoxic Activity of a Cold Atmospheric Plasma Jet in Relation to a 3D Cell Model of Human Breast Cancer. Cell Tiss. Biol. 17, 233–246 (2023). https://doi.org/10.1134/S1990519X23030094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23030094

Keywords:

Navigation