Skip to main content
Log in

The Function of MAP Kinases in Induced Histone H2AX Phosphorylation in Transformed Cells

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Histone deacetylase (HDI) inhibitors have antiproliferative properties and are promising agents of combined anticancer therapy. Previously, we have shown that sodium butyrate (NaBut), a member of the HDI family, does not independently induce double-strand breaks in DNA (DB-DNA), but, like genotoxic agents, it initiates the accumulation of H2AX phosphorylated histone (γH2AX), which is a marker of DB-DNA. HDI can also reduce the repair efficiency of DNA damaged by genotoxic agents in transformed cells. The goal of this work was to identify the signaling pathways facilitated the accumulation of γH2AX under the action of HDI in transformed cells. To this end, the role of MAPK family in NaBut-induced phosphorylation of H2AX histone, as well as in the inhibition of DNA repair, was studied. We have shown that the accumulation of γH2AX in transformed cells in response to the action of NaBut is accompanied by a reduced phosphorylation level of ERK and PKB/Akt kinases. The activating phosphorylation of p38 kinase increases under the action of NaBut and, as a result, Wip1 phosphatase accumulates, which is a probable cause of inhibition of DNA repair. At the same time, suppression of p38 kinase activity abolishes the NaBut-induced decrease in repair efficiency. Our findings concerning the abolition of the negative effect of NaBut on DNA repair upon inhibition of p38 MAP kinase, as well as data on the accumulation of Wip1 phosphatase under the action of NaBut, suggest that the p38/Wip1 pathway is involved in the NaBut-induced decrease in repair efficiency in transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abramova, M.V., Svetlikova, S.B., Kukushkin, A.N., Aksenov, N.D., Pospelova, T.V., and Pospelov, V.A., HDAC inhibitor sodium butyrate sensitizes E1A+Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of γH2AX foci, Cancer Biol. Ther., 2011, vol. 12, p. 1069.

    Article  CAS  PubMed  Google Scholar 

  2. Adimoolam, S., Sirisawad, M., Chen, J., Thiemann, P., Ford, J.M., and Buggy, J.J., HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, p. 19482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belova, G.I., Demidov, O., Fornace, A.J., and Bulavin, D.V., Chemical inhibition of Wip1 phosphatase contributes to suppression of tumorigenesis, Cancer Biol. Ther., 2005, vol. 4, p. 1154.

    Article  CAS  PubMed  Google Scholar 

  4. Bennett, B.L., Sasaki, D.T., Murray, B.W., O’Leary, E.C., Sakata, S.T., Xu, W., Leisten, J.C., Motiwala, A., Pierce, S., Satoh, Y., Bhagwat, S.S., Manning, A.M., and Anderson, D.W., SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, p. 13681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bian, L., Meng, Y., Zhang, M., and Li, D., MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment, Mol. Cancer, 2019, vol. 18, p. 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, p. 248.

    Article  CAS  PubMed  Google Scholar 

  7. Cha, H., Lowe, J.M., Li, H., Lee, J.-S., Belova, G.I., Bulavin, D.V., and Fornace, A.J., Wip1 directly dephosphorylates gamma-H2AX and attenuates the DNA damage response, Cancer Res., 2010, vol. 70, p. 4112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eren, M.K., Kartal, N.B., and Pilevneli, H., Oncogenic WIP1 phosphatase attenuates the DNA damage response and sensitizes p53 mutant Jurkat cells to apoptosis, Oncol. Lett., 2021, vol. 21, p. 479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fiscella, M., Zhang, H., Fan, S., Sakaguchi, K., Shen, S., Mercer, W.E., Vande Woude, G.F., O’Connor, P.M., and Appella, E., Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, p. 6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fogarty, M.P., Downer, E.J., and Campbell, V., A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons, Biochem. J., 2003, vol. 371, p. 789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaymes, T.J., Padua, R.A., Pla, M., Orr, S., Omidvar, N., Chomienne, C., Mufti, G.J., and Rassool, F.V., Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apoptosis?, Mol. Cancer Res. MCR, 2006, vol. 4, p. 563.

    Article  CAS  PubMed  Google Scholar 

  12. Gnedina, O.O., Morshneva, A.V., Skvortsova, E.V., and Igotti, M.V., Hdac inhibitor sodium butyrate attenuates the DNA repair in transformed but not in normal fibroblasts, Int. J. Mol. Sci., 2022, vol. 23, p. 3517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Golding, S., Rosenberg, E., Neill, S., Dent, P., Povirk, L., and Valerie, K., Extracellular signal-related kinase positively regulates ataxia telangiectasia mutated, homologous recombination repair, and the DNA damage response, Cancer Res., 2007, vol. 67, p. 1046.

    Article  CAS  PubMed  Google Scholar 

  14. Goloudina, A.R., Tanoue, K., Hammann, A., Four-maux, E., Le Guezennec, X., Bulavin, D.V., Mazur, S.J., Appella, E., Garrido, C., and Demidov, O.N., Wip1 promotes RUNX2-dependent apoptosis in p53-negative tumors and protects normal tissues during treatment with anticancer agents, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, p. E68.

    Article  CAS  PubMed  Google Scholar 

  15. Kasibhatla, S., Brunner, T., Genestier, L., Echeverri, F., Mahboubi, A., and Green, D.R., DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1, Mol. Cell, 1998, vol. 1, p. 543.

    Article  CAS  PubMed  Google Scholar 

  16. Konsoula, Z., Cao, H., Velena, A., and Jung, M., Adamantanyl-histone deacetylase inhibitor H6CAHA exhibits favorable pharmacokinetics and augments prostate cancer radiation sensitivity, Int. J. Radiat. Oncol. Biol. Phys., 2011, vol. 79, p. 1541.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, S., Jiang, M.S., Adams, J.L., and Lee, J.C., Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase, Biochem. Biophys. Res. Commun., 1999, vol. 263, p. 825.

    Article  CAS  PubMed  Google Scholar 

  18. Lee, J.H., Choy, M.L., Ngo, L., Foster, S.S., and Marks, P.A., Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, p. 14639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowe, J., Cha, H., Lee, M.-O., Mazur, S.J., Appella, E., and Fornace, A.J., Regulation of the Wip1 phosphatase and its effects on the stress response, Front. Biosci. J. Virtual Libr., 2012, vol. 17, p. 1480.

    Article  CAS  Google Scholar 

  20. Lu, C., Zhu, F., Cho, Y.-Y., Tang, F., Zykova, T., Ma, W., Bode, A.M., and Dong, Z., Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3, Mol. Cell, 2006, vol. 23, p. 121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu, C., Shi, Y., Wang, Z., Song, Z., Zhu, M., Cai, Q., and Chen, T., Serum starvation induces H2AX phosphorylation to regulate apoptosis via p38 MAPK pathway, FEBS Lett., 2008, vol. 582, p. 2703.

    Article  CAS  PubMed  Google Scholar 

  22. Menolfi, D. and Zha, S., ATM, ATR and DNA-PKcs kinases—the lessons from the mouse models: inhibition ≠ deletion, Cell Biosci., 2020, vol. 10, p. 8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moon, S.-H., Lin, L., Zhang, X., Nguyen, T.-A., Darlington, Y., Waldman, A.S., Lu, X., and Donehower, L.A., Wild-type p53-induced phosphatase 1 dephosphorylates histone variant γ-H2AX and suppresses DNA double strand break repair, J. Biol. Chem., 2010, vol. 285, p. 12935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Munshi, A., Kurland, J.F., Nishikawa, T., Tanaka, T., Hobbs, M.L., Tucker, S.L., Ismail, S., Stevens, C., and Meyn, R.E., Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity, Clin. Cancer Res., 2005, vol. 11, p. 4912.

    Article  CAS  PubMed  Google Scholar 

  25. Nicholson, J., Jevons, S.J., Groselj, B., Ellermann, S., Konietzny, R., Kerr, M., Kessler, B.M., and Kiltie, A.E., E3 Ligase cIAP2 mediates downregulation of MRE11 and radiosensitization in response to HDAC inhibition in bladder cancer, Cancer Res., 2017, vol. 77, p. 3027.

    Article  CAS  PubMed  Google Scholar 

  26. Pechackova, S., Burdova, K., Benada, J., Kleiblova, P., Jenikova, G., and Macurek, L., Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3, Oncotarget, 2016, vol. 7, p. 14458.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Phong, M.S., Van Horn, R.D., Li, S., Tucker-Kellogg, G., Surana, U., and Ye, X.S., P38 mitogen-activated protein kinase promotes cell survival in response to DNA damage but is not required for the G2 DNA damage checkpoint in human cancer cells, Mol. Cell. Biol., 2010, vol. 30, p. 3816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Picco, V. and Pagès, G., Linking JNK activity to the DNA damage response, Genes Cancer, 2013, vol. 4, p. 360.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pospelova, T.V., Medvedev, A.V., Kukushkin, A.N., Svetlikova, S.B., van der Eb, A.J., Dorsman, J.C., and Pospelov, V.A., E1A + cHa-ras transformed rat embryo fibroblast cells are characterized by high and constitutive DNA binding activities of AP-1 dimers with significantly altered composition, Gene Expr., 1999, vol. 8, p. 19.

    CAS  PubMed  Google Scholar 

  30. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M., DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139, J. Biol. Chem., 1998, vol. 273, p. 5858.

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez-Prieto, R., Rojas, J.M., Taya, Y., and Gutkind, J.S., A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents, Cancer Res., 2000, vol. 60, p. 2464.

    CAS  PubMed  Google Scholar 

  32. Shreeram, S., Demidov, O.N., Hee, W.K., Yamaguchi, H., Onishi, N., Kek, C., Timofeev, O.N., Dudgeon, C., Fornace, A.J., Anderson, C.W., Minami, Y., Appella, E., and Bulavin, D.V., Wip1 phosphatase modulates ATM-dependent signaling pathways, Mol. Cell, 2006, vol. 23, p. 757.

    Article  CAS  PubMed  Google Scholar 

  33. Sluss, H.K. and Davis, R.J., H2AX is a target of the JNK signaling pathway that is required for apoptotic DNA fragmentation, Mol. Cell, 2006, vol. 23, p. 152.

    Article  CAS  PubMed  Google Scholar 

  34. Tafolla, E., Wang, S., Wong, B., Leong, J., and Kapila, Y.L., JNK1 and JNK2 oppositely regulate p53 in signaling linked to apoptosis triggered by an altered fibronectin matrix: JNK links FAK and p53, J. Biol. Chem., 2005, vol. 280, p. 19992.

    Article  CAS  PubMed  Google Scholar 

  35. Thurn, K.T., Thomas, S., Raha, P., Qureshi, I., and Munster, P.N., Histone deacetylase regulation of ATM-mediated DNA damage signaling, Mol. Cancer Ther., 2013, vol. 12.https://doi.org/10.1158/1535

  36. Van Attikum, H. and Gasser, S.M., Crosstalk between histone modifications during the DNA damage response, Trends Cell Biol., 2009, vol. 19, p. 207.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, D., Zhao, M., Chen, G., Cheng, X., Han, X., Lin, S., Zhang, X., and Yu, X., The histone deacetylase inhibitor vorinostat prevents TNFα-induced necroptosis by regulating multiple signaling pathways, Apoptosis Int. J. Program. Cell Death, 2013, vol. 18, p. 1348.

    Article  CAS  Google Scholar 

  38. Wang, H., Zhou, W., Zheng, Z., Zhang, P., Tu, B., He, Q., and Zhu, W.-G., The HDAC inhibitor depsipeptide transactivates the p53/p21 pathway by inducing DNA damage, DNA Repair, 2012, vol. 11, p. 146.

    Article  CAS  PubMed  Google Scholar 

  39. Wei, F., Yan, J., and Tang, D., Extracellular signal-regulated kinases modulate DNA damage response—a contributing factor to using MEK inhibitors in cancer therapy, Curr. Med. Chem., 2011, vol. 18, p. 5476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, D., Chen, B., Parihar, K., He, L., Fan, C., Zhang, J., Liu, L., Gillis, A., Bruce, A., Kapoor, A., and Tang, D., ERK activity facilitates activation of the S-phase DNA damage checkpoint by modulating ATR function, Oncogene, 2006, vol. 25, p. 1153.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Y.-H., Hong, C.-W., Wang, Y.-C., Huang, W.-J., Yeh, Y.-L., Wang, B.-J., Wang, Y.-J., and Chiu, H.-W., A novel histone deacetylase inhibitor TMU-35435 enhances etoposide cytotoxicity through the proteasomal degradation of DNA-PKcs in triple-negative breast cancer, Cancer Lett., 2017, vol. 400, p. 79.

    Article  CAS  PubMed  Google Scholar 

  42. Yan, Y., Black, C.P., and Cowan, K.H., Irradiation-induced G2/M checkpoint response requires ERK1/2 activation, Oncogene, 2007, vol. 26, p. 4689.

    Article  CAS  PubMed  Google Scholar 

  43. Ye, M., Zhang, Y., Gao, H., Xu, Y., Jing, P., Wu, J., Zhang, X., Xiong, J., Dong, C., Yao, L., Zhang, J., and Zhang, J., Activation of the aryl hydrocarbon receptor leads to resistance to EGFR TKIs in non-small cell lung cancer by activating Src-mediated bypass signaling, Clin. Cancer Res., 2018, vol. 24, p. 1227.

    Article  CAS  PubMed  Google Scholar 

  44. Young, P.R., McLaughlin, M.M., Kumar, S., Kassis, S., Doyle, M.L., McNulty, D., Gallagher, T.F., Fisher, S., McDonnell, P.C., Carr, S.A., Huddleston, M.J., Seibel, G., Porter, T.G., Livi, G.P., Adams, J.L., et al., Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site, J. Biol. Chem., 1997, vol. 272, p. 12116.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation (project no. 22-25-20229) and the St. Petersburg Science Foundation in accordance with agreement no. 05/2022 dated April 13, 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Igotti.

Ethics declarations

The authors declare that they have no conflicts of interest. Experiments involving animals or human beings have not been performed.

Additional information

Translated by I. Fridlyanskaya

Abbreviations: DB—double-strand breaks; HDI—histone deacetylase inhibitor; DNA-PK—DNA-dependent protein kinase; NaBut—sodium butyrate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnedina, O.O., Morshneva, A.V. & Igotti, M.V. The Function of MAP Kinases in Induced Histone H2AX Phosphorylation in Transformed Cells. Cell Tiss. Biol. 17, 247–255 (2023). https://doi.org/10.1134/S1990519X23030045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23030045

Keywords:

Navigation