Skip to main content
Log in

Changes in Content of Small Noncoding RNA in Spermatozoa as a Possible Mechanism of Transgenerational Transmission of Paternal Stress Effect: An Experimental Study

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

It has been proved that paternal stress can affect the phenotype of offspring, inducing somatic, behavioral, hormonal, and molecular changes. One hypothetical mechanism responsible for the transmission of paternal effects to offspring is an altered spectrum of regulatory noncoding RNAs in spermatozoa. In the present work, we investigated the effect of paternal stress in models of posttraumatic stress disorder (PTSD) and depression on the spectrum of small RNA (micro- and piwiRNAs) in the sperm of stressed animals. Male Wistar rats were subjected to stress in two paradigms (“stress–restress” and “learned helplessness”), resulted in the development of PTSD- and depression-like states in model animals, respectively. Forty-eight days after the restress, RNA was isolated from obtained sperm preparations. The spectrum of small RNAs was examined by next-generation sequencing (NGS). In males with a PTSD-like state, altered expression of 27 piwiRNAs and 77 microRNAs was revealed compared with the control group. Among the targets of these microRNAs, one can distinguish genes the products of which may be involved in such mechanisms of transmission of paternal effects to offspring as changes in DNA methylation, histone modifications and RNA interference (Dnmt3a, Setd5, Hdac1, Mllt10, and Mtdh), as well as genes associated with the functioning of insulin-like growth factor 2, the expression of which is changed in the CNS in the offspring of males with a PTSD-like state (Igf2, Igf2bp2, and Igf2r). In males with a simulated depression-like state, no changes in the representation of small RNAs were registered. The results obtained demonstrate that paternal stress has a pronounced effect on the spectrum of short noncoding RNAs in spermatozoa in rats, however, this effect depends on the nature of the stress effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G., Peng, H., Zhang, X., Zhang, Y., Qian, J., Duan, E., Zhai, Q., and Zho, Q., Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder, Science, 2016, vol. 351, p. 397. https://doi.org/10.1126/science.aad7977

    Article  CAS  PubMed  Google Scholar 

  2. Czech, B., Munafó, M., Ciabrelli, F., Eastwood, E.L., Fabry, M.H., Kneuss, E., and Hannon, G.J., piRNA-guided genome defense: from biogenesis to silencing, Annu. Rev. Genet., 2018, vol. 52, p. 131. https://doi.org/10.1146/annurev-genet-120417-031441

    Article  CAS  PubMed  Google Scholar 

  3. Czén, B., Fuchs, E., Wiborg, O., and Simon, M., Animal models of major depression and their clinical implications, Prog. Neuro-Psyhopharmacol. Biol. Psychiatry, 2016, vol. 64, p. 293. https://doi.org/10.1016/j.pnpbp.2015.04.004

    Article  Google Scholar 

  4. Dietz, D.M., LaPlant, Q., Watts, E.L., Hodes, G.E., Russo, S.J., Feng, J., Oosting, R.S., Vialou, V., and Nestler, E.J., Paternal transmission of stress-induced pathologies, Biol. Psychiatry, 2011, vol. 70, p. 408. https://doi.org/10.1016/j.biopsych.2011.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dimofski, P., Meyre, D., Dreumont, N., and Leininger-Muller, B., Consequences of paternal nutrition on offspring health and disease, Nutrients, 2021, vol. 13, p. 2818. https://doi.org/10.3390/nu13082818

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duffy, K.A., Bale, T.L., and Epperson, C.N., Germ cell drivers: transmission of preconception stress across generations, Front. Hum. Neurosci., 2021, vol. 15, p. 642762. https://doi.org/10.3389/fnhum.2021.642762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Franklin, T.B., Russig, H., Weiss, I.C., Gräff, J., Linder, N., Michalon, A., Vizi, S., and Mansuy, I., Epigenetic transmission of the impact of early stress across generations, Biol. Psychiatry, 2010, vol. 68, p. 408. https://doi.org/10.1016/j.biopsych.2010.05.036

    Article  PubMed  Google Scholar 

  8. Frost, R.J.A. and Olson, E.N., Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microR-NAs, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, p. 21075. https://doi.org/10.1073/pnas.1118922109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fullston, T, Ohlsson Teague, E.M., Palmer, N.O., DeBlasio, M.J., Mitchell, M., Corbett, M., and Owens, M., Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content, FASEB J., 2013, vol. 27, p. 4226. https://doi.org/10.1096/fj.12-224048

    Article  CAS  PubMed  Google Scholar 

  10. Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinell, L., Miska, E., and Mansuy, I., Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice, Nat. Neurosci., 2014, vol. 17, p. 667. https://doi.org/10.1038/nn.3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Godia, M., Swanson, G., and Krawetz, S.A., A history of why fathers’ RNA matters, Biol. Reprod., 2018, vol. 99, p. 147. https://doi.org/10.1093/biolre/ioy007

    Article  PubMed  Google Scholar 

  12. Guo, L., Chao, S.-B., Xiao, L., Wang, Z.-B., Meng, T.-G., Li, Y.-Y., Han, Z.-M., Ouyang, Y.-C., Hou, Y., Sun, Q.-Y., and Ou, X.-H., Sperm-carried RNAs play critical roles in mouse embryonic development, Oncotarget, 2017, vol. 8, p. 67394. https://doi.org/10.18632/oncotarget.18672

    Article  PubMed  PubMed Central  Google Scholar 

  13. Harker, A., Carroll, C., Raza, S., Kolb, B., and Gibb, R., Preconception paternal stress in rats alters brain and behavior in offspring, Neuroscience, 2018, vol. 388, p. 474. https://doi.org/10.1016/j.neuroscience.2018.06.034

    Article  CAS  PubMed  Google Scholar 

  14. Huang, Y., Zhang, J.L., Yu, X.L., Xu, T.S., Wang, Z., Bin, Z., and Chao, X., Molecular functions of small regulatory noncoding RNA, Biochemistry, 2013, vol. 78, p. 221. https://doi.org/10.1134/S0006297913030024

    Article  CAS  PubMed  Google Scholar 

  15. Jodar, M., Selvaraju, S., Sendler, E., Diamond, M.P., and Krawetz, S.A., The presence, role and clinical use of spermatozoal RNAs, Hum. Reprod. Update, 2013, vol. 19, p. 604. https://doi.org/10.1093/humupd/dmt031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamalidehghan, B., Habibi, M., Afjeh, S.S., Shoai, M., Alidoost, S., Ghal, R.A., Eshghifar, N., and Pouresmaei-li, F., The importance of small non-coding RNAs in human reproduction: a review article, Appl. Clin. Genet., 2020, vol. 13, p. 1. https://doi.org/10.2147/TACG.S207491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kiani, J. and Rassoulzadegan, M., A load of small RNAs in the sperm—how many bits of hereditary information?, Cell Res., 2013, vol. 23, p. 18. https://doi.org/10.1038/cr.2012.181

    Article  CAS  PubMed  Google Scholar 

  18. Love, M.I., Huber, W., and Anders, S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 2014, vol. 15, p. 550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ly, L., Chan, D., and Trasler, J.M., Developmental windows of susceptibility for epigenetic inheritance through the male germline, Semin. Cell Dev. Biol., 2015, vol. 43, p. 96. https://doi.org/10.1016/j.semcdb.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  20. Morgan, C.P., Chan, J.C., and Bale, T.L., Driving the next generation: paternal lifetime experiences transmitted via extracellular vesicles and their small RNA cargo, Biol. Psychiatry, 2019, vol. 85, p. 164. https://doi.org/10.1016/j.biopsych.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  21. Morgan, C.P., Shetty, A.C., Chan, J.C., Berger, D.S., Ament, S.A., Epperson, C.N., and Bale, T.L., Repeated sampling facilitates within‑ and between‑subject modeling of the human sperm transcriptome to identify dynamic and stress-responsive sncRNAs, Sci. Rep., 2020, vol. 10, p. 17498. https://doi.org/10.1038/s41598-020-73867-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ordyan, N.E., Malysheva, O.V., Akulova, V.K., Pivina, S.G., and Kholova, G.I., The capability to learn and expression of the insulin-like growth factor II gene in the brain of male rats whose fathers were subjected to stress factors in the “stress–restress” paradigm, Neurochem. J., 2020, vol. 14, p. 191. https://doi.org/10.1134/S1819712420020075

    Article  CAS  Google Scholar 

  23. Ordyan, N.E., Malysheva, O.V., Kholova, G.I., Akulova, V.K., and Pivina, S.G., Sex-dependent influence of male rat stress on the memory and expression of the insulin-like growth factor 2 gene in the offspring brain, Zh. Vyssh. Nerv. Deyat. im. I.P. Pavlova, 2021a, vol. 71, no. 3, p. 387. https://doi.org/10.31857/S0044467721030060

    Article  Google Scholar 

  24. Ordyan, N.E., Malysheva, O.V., Akulova, V.K., Kholova, G.I., and Pivina, S.G., Cognitive impairment in the offspring of male rats exposed to stress in “stress–restress” or “learned helplessness” paradigms: the role of insulin-like growth factor 2, Integr. Physiol., 2021b, vol. 2, no. 1, p. 61. https://doi.org/10.33910/2687-1270-2021-2-1-61-70

    Article  Google Scholar 

  25. Ordyan, N.E., Pivina, S.G., Akulova, V.K., and Kholova, G.I., Changes in the nature of behavior and the activity of the hypophyseal-adrenocortical system in the offspring of paternal rats subjected to stress in the stress–restress paradigm before mating, Neurosci. Behav. Physiol., 2021c, vol. 51, p. 528. https://doi.org/10.1007/s11055-021-01100-7

    Article  CAS  Google Scholar 

  26. Ozata, D.M., Gainetdinov, I., Zoch, A., O’Caroll, D., and Zamore, P.D., PIWI-interacting RNAs: small RNAs with big functions, Nat. Rev. Genet., 2019, vol. 20, p. 89. https://doi.org/10.1038/s41576-018-0073-3

    Article  CAS  PubMed  Google Scholar 

  27. Peng, H., Shi, J., Zhang, Y., Zhang, H., Liao, S., Li, W., Lei, L., Han, C., Ning, L., Cao, Y., Zhou, Q., Chen, Q., and Duan, E., A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm, Cell Res., 2012, vol. 22, p. 1609. https://doi.org/10.1038/cr.2012.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pivina, S.G., Rakitskaya, V.V., Akulova, V.K., and Ordyan, N.E., Activity of the hypothalamic–pituitary–adrenal system in prenatally stressed male rats on the experimental model of post-traumatic stress disorder, Bull. Exp. Biol. Med., 2016, vol. 160, p. 601. https://doi.org/10.1007/s10517-016-3227-3

    Article  CAS  PubMed  Google Scholar 

  29. Rando, O.J., Daddy issues: paternal effects on phenotype, Cell, 2012, vol. 151, p. 702. https://doi.org/10.1016/j.cell.2012.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodgers, A.B., Morgan, C.P., Bronson, S.L., Revello, S., and Bale, T.L., Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation, J. Neurosci., 2013, vol. 33, p. 9003. https://doi.org/10.1523/JNEUROSCI.0914-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodgers, A.B. and Bale, T.L., Germ cell origins of posttraumatic stress disorder risk: the transgenerational impact of parental stress experience, Biol. Psychiatry, 2015, vol. 78, p. 307. https://doi.org/10.1016/j.biopsych.2015.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rodgers, A.B., Morgan, C.P., Leu, N.A., and Bale, T.L., Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, p. 13699. https://doi.org/10.1073/pnas.1508347112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma, A., Transgenerational epigenetic inheritance: focus on soma to germline information transfer, Prog. Biophys. Mol. Biol., 2013, vol. 113, p. 439. https://doi.org/10.1016/j.pbiomolbio.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  34. Short, A.K., Fennell, K.A., Perreau, V.M., Fox, A., O’Bryan, M.K., Kim, J.H., Bredy, T.W., Pang, T.Y., and Hannan, A.J., Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring, Transl. Psychiatry, 2016, vol. 6, p. e837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xavier, M.J., Roman, S.D., Aitken, R.J., and Nixon, B., Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health, Hum. Reprod. Update, 2019, vol. 25, p. 518. https://doi.org/10.1093/humupd/dmz017

    Article  CAS  PubMed  Google Scholar 

  36. Yan, W., Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance, Moll. Cell. Endocrinol., 2014, vol. 398, p. 24. https://doi.org/10.1016/j.mce.2014.09.008

    Article  CAS  Google Scholar 

  37. Yehuda, R., Blair, W., Labinsky, E., and Bierer, L.M., Effects of parental PTSD on the cortisol response to dexamethasone administration in their adult offspring, Am. J. Psychiatry, 2007a, vol. 164, p. 163. https://doi.org/10.1176/ajp.2007.164.1.163

    Article  PubMed  Google Scholar 

  38. Yehuda, R., Teicher, M.H., Seckl, J.R., Grossman, R.A., Morris, A., and Bierer, L.M., Parental posttraumatic stress disorder as a vulnerability factor for low cortisol trait in offspring of Holocaust survivors, Archiv. Gen. Psychiatry, 2007b, vol. 64, p. 1040. https://doi.org/10.1001/archpsyc.64.9.1040

    Article  CAS  Google Scholar 

  39. Yeshurun, S. and Hannan, A.J., Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders, Mol. Psychiatry, 2019, vol. 24, p. 536. https://doi.org/10.1038/s41380-018-0039-z

    Article  CAS  PubMed  Google Scholar 

  40. Yuan, S., Schuster, A., Tang, C., Yu, T., Ortogero, N., Bao, J., Zheng, H., and Yan, W., Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development, Development, 2016, vol. 143, p. 635. https://doi.org/10.1242/dev.131755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out within the framework of a state order to the Pavlov Institute of Physiology, Russian Academy of Sciences, and Ott Research Institute of Obstetrics, Gynecology and Reproductology , FNI subject no. AAAA-A19-119021290033-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Malysheva.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. The work was carried out in compliance with recommendations on the ethics of working with animals approved by the legal acts of the Russian Federation, the principles of the Basel Declaration, and the recommendations of the Commission for the Humane Treatment of Animals of the Pavlov Institute of Physiology, Russian Academy of Sciences.

Additional information

Abbreviations: DLS—depression-like state; PTSD—posttraumatic stress disorder; ELISA—enzyme immunoassay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malysheva, O.V., Pivina, S.G., Ponomareva, E.N. et al. Changes in Content of Small Noncoding RNA in Spermatozoa as a Possible Mechanism of Transgenerational Transmission of Paternal Stress Effect: An Experimental Study. Cell Tiss. Biol. 17, 223–232 (2023). https://doi.org/10.1134/S1990519X23030070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23030070

Keywords:

Navigation