Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 5, 2023

Crystal structure of the ternary silicide ErNi4.04Si0.96

  • Bohdana Belan ORCID logo , Mariya Dzevenko ORCID logo EMAIL logo , Dorota A. Kowalska ORCID logo and Roman Gladyshevskii ORCID logo

Abstract

The ternary silicide ErNi4.04Si0.96 was synthesized by arc-melting of stoichiometric quantities of the elements, and its crystal structure has been determined using single-crystal X-ray diffraction data. The compound crystallizes in the CaCu5 structure type: hexagonal space group P6/mmm, Pearson code hP6, Z = 1; a = 4.874(3), c = 3.959(2) Å, V = 81.5(1) Å3; R1 = 0.0239, wR2 = 0.0503, for 67 independent reflections with I > 2σ(I) and eight variables. The erbium and nickel atoms occupy the crystallographic positions 1a and 2c, respectively. The position 3g is occupied by a mixture of Ni and Si atoms. The structure of this silicide represents a packing of bipyramidal units built from nickel and Ni/Si atoms.


Corresponding author: Mariya Dzevenko, Kruty Heroes Lviv Lyceum with Intensive Military and Physical Training, Pasichna Str. 68, 79038 L’viv, Ukraine, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bodak, O. I., Gladyshevskii, E. I. Ternary Systems Containing Rare Earth Metals; Vyshcha shkola: Lvov, 1985.Search in Google Scholar

2. Zhou, H., Yao, Q., Yuan, S., Liu, J., Deng, H. J. Alloys Compd. 2004, 366, 161–164; https://doi.org/10.1016/s0925-8388(03)00698-4.Search in Google Scholar

3. Bodak, O., Salamakha, P., Sologub, O. J. Alloys Compd. 1997, 256. L8–L9; https://doi.org/10.1016/s0925-8388(96)02871-x.Search in Google Scholar

4. Bodak, O. I. Inorg. Mater. 1983, 19, 1188–1190.Search in Google Scholar

5. Chen, X., Zhuang, Y. Phase Trans. 2017, 90, 742–750; https://doi.org/10.1080/01411594.2016.1260718.Search in Google Scholar

6. Chen, X., Gong, J., Luo, J., Yang, W., Qing, X. J. Rare Earths 2020, 38, 969–975; https://doi.org/10.1016/j.jre.2019.07.018.Search in Google Scholar

7. Xiang, C., Ni, C., Wang, D.-C. J. Phase Equilib. Diffus. 2020, 41, 138–147; https://doi.org/10.1007/s11669-020-00788-3.Search in Google Scholar

8. Matviyishyn, R., Pavlyuk, V., Demchenko, V. Coll. Abstr. of the XVII Ukrainian Conference of Non-Organic Chemistry. Lviv, 2008, p. 171.Search in Google Scholar

9. Pani, M., Provino, A., Smetana, V., Shtender, V., Bernini, C., Mudring, A.-V., Manfrinetti, P. CrystEngComm 2022, 24, 8219; https://doi.org/10.1039/d2ce01007k.Search in Google Scholar

10. Godart, C., Gupta, L. C., Tomy, C. V., Patil, S., Nagarajan, R., Beaurepaire, E., Vijayaraghavan, R., Yakhmi, J. V. Mater. Res. Bull. 1988, 23, 1781–1785; https://doi.org/10.1016/0025-5408(88)90189-4.Search in Google Scholar

11. Kishimoto, Y., Kawasaki, Y., Ohno, T. Phys. Lett. A 2003, 317, 308–314; https://doi.org/10.1016/j.physleta.2003.08.050.Search in Google Scholar

12. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2018/19); ASM International®: Materials Park, Ohio (USA), 2018.Search in Google Scholar

13. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types; Springer: Berlin, Heidelberg, 1993.10.1007/978-3-662-02909-1Search in Google Scholar

14. Matvijishyn, R., Demchenko, P., Gorelenko, Yu., Pavlyuk, V., Różycka-Sokołowska, E., Marciniak, B. Visn. Lviv Univ., Ser. Chem. 2008, 49, 43–49.Search in Google Scholar

15. Morozkin, A. V., Knotko, A. V., Yapaskurt, V. O., Yuan, F., Mozharivskyj, Y., Nirmala, R. J. Solid State Chem. 2013, 208, 9–13; https://doi.org/10.1016/j.jssc.2013.09.036.Search in Google Scholar

16. Senchuk, O., Demchenko, G., Demchenko, P., Gladyshevskii, R. Visn. Lviv Univ., Ser. Chem. 2013, 54, 77–83.Search in Google Scholar

17. CrysAlis Pro Software System (version 1.171). Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography. Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2015.Search in Google Scholar

18. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

19. Emsley, J. The Elements, 2nd ed.; Clarendon Press: Oxford, 1991.Search in Google Scholar

20. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Search in Google Scholar

21. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

Received: 2023-03-11
Accepted: 2023-05-02
Published Online: 2023-06-05
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0014/html
Scroll to top button