Skip to main content
Log in

Pyridine Vapor Annealing Induced Reversible Switching Emission and Enhanced Electroluminescent Performance of Poly(fluorene-co-dibenzothiophene-S,S-dioxide)

  • Original Article – Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this article, we report on blue-green exciplex emission through pyridine solvent vapor annealing blue-light polymer PFSO10, which is comprised the strong electron-withdrawing dibenzo-thiophene-S,S-dioxide with the molar ratio of 10%. The photoluminescent spectrum of PFSO10 film emerged a fresh low-energy emission peaked at 482 nm after pyridine solvent vapor annealing, which was stemmed from the exciplex charge-transfer state between the PFSO10 and pyridine. It is worth noting that the exciplex emission peaked at 482 nm from the pyridine solvent vapor annealing film was disappeared after thermal annealed at 120 °C and its photoluminescent spectrum was similar to that of the pristine PFSO10 film. This similar phenomenon of photoluminescent spectrum was also occurred to the electroluminescent spectra of the PFSO10 films. Furthermore, the device performance of PFSO10 was achieved significant improvement after pyridine solvent vapor annealing. With optimizing the pyridine vapor annealing process, the device based on PFSO10 as emissive layer received a maximum luminous efficiency of 6.74 cd A−1 with the peak brightness of 22,364 cd m−2, which was enlarged over 140% compared to that of 2.77 cd A−1 for the pristine PFSO10. These results demonstrate that appropriate solvent vapor annealing can be a simple and effective strategy to realize the reversible switching emission and improve the device performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Chi, Z., Zhang, X., Xu, B., Zhou, X., Ma, C., Zhang, Y., Liu, S., Xu, J.: Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 41, 3878–3896 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Wang, L.X., Jing, X.B., Wang, F.S.: Poly(spirobifluorene)s containing nonconjugated diphenylsulfone moiety: toward blue emission through a weak charge transfer effect. Macromolecules 47, 2907–2914 (2014)

    Article  ADS  CAS  Google Scholar 

  3. Shao, S.Y., Ding, J.Q., Wang, L.X., Jing, X.B., Wang, F.S.: White electroluminescence from all-phosphorescent single polymers on a fluorinated poly(arylene ether phosphine oxide) backbone simultaneously grafted with blue and yellow phosphors. J. Am. Chem. Soc. 134, 20290–20293 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. Chen, Z., Liu, X.-K., Zheng, C.-J., Ye, J., Liu, C.-L., Li, F., Ou, X.-M., Lee, C.-S., Zhang, X.-H.: High performance exciplex-based fluorescence-phosphorescence white organic light-emitting device with highly simplified structure. Chem. Mater. 27, 5206–5211 (2015)

    Article  CAS  Google Scholar 

  5. Ying, L., Ho, C.-L., Wu, H.B., Cao, Y., Wong, W.-Y.: White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress. Adv. Mater. 26, 2459–2473 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Vander, B., Li, Y.G., Wetzelaer, G.-J.A.H., Blom, P.W.M.: Efficiency of polymer light-emitting diodes: a perspective. Adv. Mater. 34(13), 2108887 (2022)

    Article  Google Scholar 

  7. Huseynova, G., Yoo, J.-M., Sung, B., Lee, S.-H., Lee, J., Woo, S.W., Kim, Y.H., Lee, J.-H., Lee, J.: Effect of the hole injection layer conductivity on the performance of polymer light-emitting diodes. Electron. Mater. Lett. 17, 331–339 (2021)

    Article  ADS  CAS  Google Scholar 

  8. Zhang, M., Zheng, C.-J.J., Lin, H., Tao, S.L.: Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes. Mater. Horiz. 8(2), 401–425 (2021)

    Article  CAS  PubMed  Google Scholar 

  9. Liu, L., Wang, X.Y., Zhu, S.X., Yao, C., Jiang, X.F., Guo, J.J., Li, L.D.: Organic nanoparticles with efficient and adjustable exciplex emission for biological imaging. Dyes Pigm. 166, 416–421 (2019)

    Article  CAS  Google Scholar 

  10. Guo, J.F., Zhen, Y.G., Dong, H.L., Hu, W.P.: Recent progress on organic exciplex materials with different donor-acceptor contacting modes for luminescent applications. J. Mater. Chem. C. 9, 16843–16858 (2021)

    Article  CAS  Google Scholar 

  11. Zhang, C., Lu, Y., Liu, Z.Y., Zhang, Y.W., Wang, X.W., Zhang, D.D., Duan, L.: A π–D and π–A exciplex-forming host for high-efficiency and long-lifetime single-emissive-layer fluorescent white organic light-emitting diodes. Adv. Mater. 22, 2004040 (2020)

    Article  Google Scholar 

  12. Wu, F.J., Zhao, X., Zhu, H.Q., Tang, X.T., Ning, Y.R., Chen, J., Chen, X.L., Xiong, Z.H.: Identifying the exciplex-to-exciplex energy transfer in tricomponent exciplex-based OLEDs through magnetic field effect measurements. ACS Photonics 9, 2713–2723 (2022)

    Article  CAS  Google Scholar 

  13. Zhang, M., Zheng, C., Lin, H., Tao, S.: Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes. Mater. Horiz. 8, 401 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. Liu, X.K., Chen, Z., Qing, J., Zhang, W.J., Wu, B., Tam, H.L., Zhu, F., Zhang, X.H., Lee, C.S.: Remanagement of singlet and triplet excitons in single- emissive-layer hybrid white organic light-emitting devices using thermally activated delayed fluorescent blue exciplex. Adv. Mater. 27, 7079–7085 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Shimoyama, D., Jäkle, F.: Controlling the aggregation and assembly of boron-containing molecular and polymeric materials. Aggregatea 3, 149 (2022)

    Article  Google Scholar 

  16. Wang, Z.H., Li, M.K., Gan, L., Cai, X.Y., Li, B.B., Chen, D.C., Su, S.-J.: Predicting operational stability for organic light-emitting diodes with exciplex cohosts. Adv. Sci. 6, 1802246 (2019)

    Article  Google Scholar 

  17. Sarma, M., Wong, K.T.: Exciplex: an intermolecular charge-transfer approach for TADF. ACS Appl. Mater. Interfaces 2018(10), 19279–19304 (2018)

    Article  Google Scholar 

  18. Lv, X.H., Sun, M.Z., Xu, L., Wang, R.Z., Zhou, H.Y., Pan, Y.Y., Zhang, S.T., Sun, Q.K., Xue, S.F., Yang, W.J.: Highly efficient non-doped blue fluorescent OLEDs with low efficiency roll-off based on hybridized local and charge transfer excited state emitters. Chem. Sci. 11, 5058–5065 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, M.S., Huang, Y.-H., Lin, K.-S., Yeh, T.-H., Duan, J.S., Ko, T.-Y., Liu, S.-W., Wong, K.-T., Hu, B.: Revealing the cooperative relationship between spin, energy, and polarization parameters toward developing high-efficiency exciplex light-emitting diodes. Adv. Mater. 31, 1904114 (2019)

    Article  CAS  Google Scholar 

  20. Zhao, J.W., Zheng, C.J., Zhou, Y., Li, C., Ye, J., Du, X.Y., Li, W., He, Z.Y., Zhang, M., Lin, H., Tao, S.L., Zhang, X.H.: Novel small-molecule electron donor for solution-processed ternary exciplex with 24% external quantum efficiency in organic light-emitting diode. Mater. Horiz. 6, 1425–1432 (2019)

    Article  ADS  CAS  Google Scholar 

  21. Han, C.M., Du, R.M., Xu, H., Han, S.Y., Ma, P., Bian, J.K., Duan, C.B., Wei, Y., Sun, M.Z., Liu, X.G., Huang, W.: Ladder-like energy-relaying exciplex enables 100% internal quantum efficiency of white TADF-based diodes in a single emissive layer. Nat. Commun. 12, 3640 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zheng, C.J., Zhang, X.H.: Thermally Activated Delayed Fluorescence Exciplexes in Organic Light-Emitting Diodes, pp. 353–426. Woodhead Publishing, Cambridge (2022)

    Book  Google Scholar 

  23. Yuang, P., Guo, X.M., Qiao, X.F., Yan, D.H., Ma, D.G.: Improvement of the electroluminescence performance of exciplex-based OLEDs by effective utilization of long-range coupled electron-hole pairs. Adv. Opt. Mater. 7, 1801648 (2019)

    Article  Google Scholar 

  24. Liu, Y.W., Wei, X.F., Li, Z.Y., Liu, J.J., Wang, R.F., Hu, X.X., Wang, P.F., Qi, T., Wang, Y.: Interface exciplex anchoring the color stability of solution- processed thermally activated delayed fluorescent white organic light-emitting diodes. Adv. Opt. Mater. 6, 1800978 (2018)

    Article  Google Scholar 

  25. Liang, J.F., Zhao, S., Jiang, X.-F., Guo, T., Yip, H.-L., Ying, L., Huang, F., Yang, W., Cao, Y.: W hite polymer light-emitting diodes based on exciplex electroluminescence from polymer blends and a single polymer. ACS Appl. Mater. Interface. 8, 6164–6173 (2016)

    Article  CAS  Google Scholar 

  26. Zhong, P.L., Zheng, C.J., Zhang, M., Zhao, J.W., Yang, H.Y., He, Z.Y., Lin, H., Tao, S.L., Zhang, X.H.: Highly efficient ternary polymer-based solution-processable exciplex with over 20% external quantum efficiency in organic light-emitting diode. Org. Electron. 76, 105449 (2020)

    Article  CAS  Google Scholar 

  27. Liang, J.F., Zhong, Z.J., Li, S., Jiang, X.-F., Ying, L., Yang, W., Peng, J.B., Cao, Y.: Efficient white polymer light-emitting diodes from single polymer exciplex electroluminescence. J. Mater. Chem. C. 5, 2397–2403 (2017)

    Article  CAS  Google Scholar 

  28. Liang, A.H., Huang, G., Wang, Z.P., Wu, W.J., Zhong, Y., Zhao, S.: Solution- processable deep red-emitting supramolecular phosphorescent polymer with novel iridium complex for organic light-emitting diodes. Electron. Mater. Lett. 12, 615–621 (2016)

    Article  ADS  CAS  Google Scholar 

  29. Shao, S.Y., Wang, L.X.: Through-space charge transfer polymers for solution-processed organic light-emitting diodes. Aggregate 1, 45–56 (2020)

    Article  Google Scholar 

  30. Sun, J.M., Cai, P., Zhang, X.W., Liang, A.H., Zhang, L.J., Chen, J.W.: Synthesis, characterization and device application of a novel blue-emitting copolymer incorporating fluorene and benzothiazole backbone units. Opt. Mater. 98, 109443 (2019)

    Article  CAS  Google Scholar 

  31. Xu, J., Yu, L., Sun, Z.Z., Li, T., Chen, H.B., Yang, W.: Efficient, stable and high color rendering index white polymer light-emitting diodes by restraining the electron trapping. Org. Electron. 84, 105785 (2020)

    Article  CAS  Google Scholar 

  32. Li, Y.Y., Wu, H.B., Zou, J.H., Ying, L., Yang, W., Cao, Y.: Enhancement of spectral stability and efficiency on blue light-emitters via introducing dibenzothiophene-S, S-dioxide isomers into polyfluorene backbone. Org. Electron. 10, 901–909 (2009)

    Article  CAS  Google Scholar 

  33. Jankus, V., Chiang, C.J., Dias, F., Monkman, A.P.: Deep blue exciplex organic light-emitting diodes with enhanced efficiency; P-type or E-type triplet conversion to singlet excitons? Adv. Mater. 25, 1455–1459 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. McElvain, S.M., Goese, M.A.: The halogenation of pyridine. J. Am. Chem. Soc. 65, 2227–2233 (1946)

    Article  Google Scholar 

  35. Kim, H.-B., Kim, J.-J.: Recent progress on exciplex-emitting OLEDs. J. Inf. Disp. 20, 105–121 (2019)

    Article  CAS  Google Scholar 

  36. Li, C.L., Duan, R.H., Liang, B.Y., Han, G.C., Wang, S.P., Ye, K.Q., Liu, Y., Yi, Y.P., Wang, Y.: Deep red to near-infrared thermally activated delayed fluorescence in organic solid films and electroluminescent devices. Angew. Chem. Int. Ed. Engl. 56, 11525–11529 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. Goushi, K., Yoshida, K., Sato, K., Adachi, C.: Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photonics 6, 253–258 (2012)

    Article  ADS  CAS  Google Scholar 

  38. Liang, B.Y., Wang, J.X., Cheng, Z., Wei, J.B., Wang, Y.: Exciplex-based electroluminescence: over 21% external quantum efficiency and approaching 100 lm/W power efficiency. J. Phys. Chem. Lett. 10, 2811 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Hung, W.Y., Chiang, P.Y., Lin, S.W., Tang, W.C., Chen, Y.T., Liu, S.H., Chou, P.T., Hung, Y.T., Wong, K.T.: Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor. ACS Appl. Mater. Interfaces 8, 4811–4818 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. López, G.P., Castner, D.G., Ratner, B.D.: XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 17, 267–272 (1991)

    Article  Google Scholar 

  41. Sezen, H., Ertas, G., Suzer, S.: Methods for probing charging properties of polymeric materials using XPS. J. Electron. Spectrosc. 178, 373–379 (2010)

    Article  Google Scholar 

  42. Cho, S., Seo, J.H., Park, S.H., Beaupré, S., Leclerc, M., Heeger, A.H.: A thermally stable semiconducting polymer. Adv. Mater. 22, 1253–1257 (2010)

    Article  CAS  PubMed  Google Scholar 

  43. Liang, J.F., Zhong, W.K., Ying, L., Yang, W., Peng, J.B., Cao, Y.: The effects of solvent vapor annealing on the performance of blue polymer light-emitting diodes. Org. Electron. 27, 1–6 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the Guangdong Basic and Applied Basic Research Fund Guangdong Province and Dongguan City United Fund (2019A1515110813); Scientific research funds of QingYuan Polytechnic (QYPT-2022-003).

Funding

Guangdong Basic and Applied Basic Research Fund Guangdong Province and Dongguan City United Fund, 2019A1515110813, Junfei Liang, Scientific research funds of QingYuan Polytechnic, QYPT-2022-003, Junfei Liang.

Author information

Authors and Affiliations

Authors

Contributions

JFLiang carried out the PLED device fabrication, measurement, and data analysis. TW and JC provided the necessary consultations during the write-up of the present article. The first draft of the manuscript was written by JFL and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Junfei Liang.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest with any individual/organization for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 300 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Wu, T. & Chen, J. Pyridine Vapor Annealing Induced Reversible Switching Emission and Enhanced Electroluminescent Performance of Poly(fluorene-co-dibenzothiophene-S,S-dioxide). Electron. Mater. Lett. 20, 183–191 (2024). https://doi.org/10.1007/s13391-023-00442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00442-3

Keywords

Navigation