Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T12:56:57.963Z Has data issue: false hasContentIssue false

Bystrite, Na7Ca(Al6Si6O24)S52–Cl: formula redefinition and relationships with other four-layer cancrinite-group minerals

Published online by Cambridge University Press:  19 April 2023

Nikita V. Chukanov*
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991 Russia
Anatoly N. Sapozhnikov
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, 1a Favorskii St., Irkutsk, 664033, Russia
Ekaterina V. Kaneva
Affiliation:
Vinogradov Institute of Geochemistry, Siberian Branch of Russian Academy of Sciences, 1a Favorskii St., Irkutsk, 664033, Russia
Dmitry A. Varlamov
Affiliation:
Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, 142432 Chernogolovka, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991 Russia
*
Corresponding author: Nikita V. Chukanov; Email: chukanov@icp.ac.ru

Abstract

Bystrite is redefined as a four-layer cancrinite-group mineral with the four-layer Losod-type framework and the end-member formula Na7Ca(Al6Si6O24)S52–Cl. The mineral is known only at the Malo–Bystrinskoe gem lazurite deposit, Baikal Lake area, Siberia, Russia. The associated minerals are calcite, lazurite, sodalite, fluorapatite, phlogopite, diopside, dolomite and plagioclase. Bystrite is brittle, with the Mohs hardness of 5 and distinct cleavage on {10$\bar{1}$0}. The yellow colour of bystrite is due to the presence of S52– anions occurring in Losod (LOS) cages of the aluminosilicate framework with the ABAC stacking sequence. Measured and calculated density is, respectively, 2.43(1) and 2.412 g cm–3 for the holotype and 2.42(1) and 2.428 g cm–3 for the cotype sample. Bystrite is uniaxial (+), ɛ = 1.660(2) and ω = 1.584(2). The mineral was characterised by infrared and Raman spectra. The empirical formulae of the holotype and cotype samples are Na6.97K0.04Ca0.98(Si6.03Al5.97O24)(S52–)0.93[(SO42–)0.15Cl0.83] and Na6.75K0.04Ca1.11(Si6.09Al5.91O24)(S52–)1.04[(HS)0.17Cl0.85], respectively. Bystrite is trigonal, space group P31c. The unit-cell parameters are: a = 12.8527(6) Å, c = 10.6907(5) Å, V = 1529.4(1) Å3 and Z = 2. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 4.821 (32) (102), 3.915 (38) (211), 3.712 (100) (300), 3.307 (50) (212), 2.782 (18) (400), 2.692 (22) (401), 2.673 (30) (004) and 2.468 (23) (402). Isomorphism and genesis of bystrite-type minerals is discussed. Bystrite and its K,HS-analogue sulfhydrylbystrite, Na5K2Ca(Al6Si6O24)S52–(HS), are indicators of highly reducing conditions.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Owen Missen

References

Ballirano, P., Maras, A. and Buseck, P.R. (1996) Crystal chemistry and IR spectroscopy of Cl- and SO4-bearing cancrinite-like minerals. American Mineralogist, 81, 10031012, https://doi.org/10.2138/am-1996-7-822Google Scholar
Bruker (2007) SAINT, version 6.0. Bruker AXS Inc., Madison, WI, USA.Google Scholar
Bruker (2008) TOPAS 4. Bruker AXS Inc., Madison, WI, USA.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London, 1716 pp.Google Scholar
Chukanov, N.V., Sapozhnikov, A.N., Shendrik, R.Yu., Vigasina, M.F. and Steudel, R. (2020a) Spectroscopic and crystal-chemical features of sodalite-group minerals from gem lazurite deposits. Minerals, 10, 1042, https://doi.org/10.3390/min10111042.Google Scholar
Chukanov, N.V., Vigasina, M.F., Zubkova, N.V., Pekov, I.V., Schäfer, C., Kasatkin, A.V. and Yapaskurt, V.O. (2020b) New aspects of the application of infrared and Raman spectroscopy to the characterization of extra-framework components in sodalite-group minerals. Minerals, 10, 363, https://doi.org/10.3390/min10040363.Google Scholar
Chukanov, N.V., Aksenov, S.M. and Rastsvetaeva, R.K. (2021) Structural chemistry, IR spectroscopy, properties, and genesis of natural and synthetic microporous cancrinite- and sodalite-related materials: a review. Microporous and Mesoporous Materials, 323, 111098, https://doi.org/10.1016/j.micromeso.2021.111098Google Scholar
Chukanov, N.V., Shendrik, R.Yu., Vigasina, M.F., Pekov, I.V., Sapozhnikov, A.N., Shcherbakov, V.D. and Varlamov, D.A. (2022a) Crystal chemistry, isomorphism, and thermal conversions of extra-framework components in sodalite-group minerals. Minerals, 12, 887, https://doi.org/10.3390/min12070887Google Scholar
Chukanov, N.V., Zubkova, N.V., Pekov, I.V., Shendrik, R.Yu., Varlamov, D.A., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Yapaskurt, V.O. and Pushcharovsky, D.Yu. (2022b) Sapozhnikovite, Na8(Al6Si6O24)(HS)2, a new sodalite-group mineral from the Lovozero alkaline massif, Kola Peninsula. Mineralogical Magazine, 86, 4959, https://doi.org/10.1180/mgm.2021.94Google Scholar
Chukanov, N.V., Zubkova, N.V., Schäfer, C., Pekov, I.V., Shendrik, R.Yu., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Yapaskurt, V.O. and Pushcharovsky, D.Yu. (2022c) Bolotinaite, (Na6K□)(Al6Si6O24)F⋅4H2O, a new sodalite-group mineral from the Eifel paleovolcanic region, Germany. Mineralogical Magazine, 86, 920928, https://doi.org/10.1180/mgm.2022.95.Google Scholar
Chukanov, N.V., Shchipalkina, N.V., Shendrik, R.Yu., Vigasina, M.F., Tauson, V.L., Lipko, S.V., Varlamov, D.A., Shcherbakov, V.D., Sapozhnikov, A.N., Kasatkin, A.V., Zubkova, N.V. and Pekov, I.V. (2022d) Isomorphism and mutual transformations of S-bearing components in feldspathoids with microporous structures. Minerals, 12, 1456, https://doi.org/10.3390/min12111456.Google Scholar
Eckert, B. and Steudel, F. (2003) Molecular spectra of sulfur molecules and solid sulfur allotropes. Topics of Current Chemistry, 231, 3197, https://doi.org/10.1007/b13181.Google Scholar
Ivanov, V.G. and Sapozhnikov, A.N. (1985) Lazurites of the USSR. Nauka, Novosibirsk, 172 pp. [in Russian].Google Scholar
Kaneva, E.V., Sapozhnikov, A.N. and Suvorova, L.F. (2017) Crystal structure of chlorinated mineral of cancrinite group with bystrite-type framework. Crystallography Reports, 62, 558565, https://doi.org/10.1134/S1063774517040071Google Scholar
Khomyakov, A.P., Cámara, F. and Sokolova, E. (2010) Carbobystrite, Na8[Al6Si6O24](CO3)⋅4H2O, a new cancrinite-group mineral species from the Khibina alkaline massif, Kola Peninsula, Russia: Description and crystal structure. The Canadian Mineralogist, 48, 291300Google Scholar
McCusker, L.B., Liebau, F. and Engelhardt, G. (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Pure and Applied Chemistry, 73, 381394, https://doi.org/10.1016/S1387-1811(02)00545-0Google Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S. (2023) Newsletter 70. Mineralogical Magazine, 87, 160168, doi:10.1180/mgm.2022.135Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276, https://doi.org/10.1107/S0021889811038970Google Scholar
Pobedimskaya, E.A., Terentieva, L.E., Sapozhnikov, A.N., Kashaev, A.A. and Dorokhova, G.I. (1991) Crystal structure of bystrite. Doklady Akademii Nauk SSSR, 319, 873878 [in Russian].Google Scholar
Rejmak, P. (2020) Computational refinement of the puzzling red tetrasulfur chromophore in ultramarine pigments. Physical Chemistry, Chemical Physics, 22, 2268422698, https://doi.org/10.1039/D0CP03019H.Google Scholar
Rinaldi, R. and Wenk, H.R. (1979) Stacking variations in cancrinite minerals. Acta Crystallographica, A35, 825828, https://doi.org/10.1107/S0567739479001868Google Scholar
Sapozhnikov, A.N., Ivanov, V.G., Piskunova, L.F., Kashaev, A.A., Terentieva, E.A. and Pobedimskaya, L.E. (1991) Bystrite Ca(Na,K)7(Si6Al6O24)(S3)1.5⋅2H2O – a new cancrinite-like mineral. Zapiski Vsesyuznogo Mineralogicheskogo Obshchestva (Proceedings of the Mineralogical Society of the USSR), 120, 97100 [in Russian].Google Scholar
Sapozhnikov, A.N., Kaneva, E.V., Suvorova, L.F., Levitsky, V.I. and Ivanova, L.A. (2017) Sulfhydrylbystrite, Na5K2Ca(Al6Si6O24)(S5)(SH), a new mineral with the LOS framework, and re-interpretation of bystrite: cancrinite-group minerals with novel extra-framework anions, Mineralogical Magazine, 81, 383402, https://doi.org/10.1180/minmag.2016.080.106Google Scholar
Sapozhnikov, A.N., Tauson, V.L., Lipko, S.V., Shendrik, R.Yu., Levitskii, V.I., Suvorova, L.F., Chukanov, N.V. and Vigasina, M.F. (2021) On the crystal chemistry of sulfur-rich lazurite, ideally Na7Ca(Al6Si6O24)(SO4)(S3)⋅nH2O. American Mineralogist, 106, 226234, https://doi.org/10.2138/am-2020-7317.Google Scholar
Steudel, R. and Chivers, T. (2019) The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries. Chemical Society Reviews, 48, 32793319 and 4338.Google Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320, https://doi.org/10.1180/mgm.2021.43Google Scholar
Wong, M.W. and Steudel, R. (2003) Structure and spectra of tetrasulfur S4 – an ab initio MO Study. Chemical Physics Letters, 379, 162169, https://doi.org/10.1016/j.cplett.2003.08.026Google Scholar