Skip to main content
Log in

Control of Composite-Wing Oscillation Coupling

  • MECHANICS
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The control of coupled flexural–torsional oscillations of a composite wing by means of monoclinic structures in a reinforced plating is considered. Decomposition of the potential energy of deformation and kinetic energy of natural oscillation modes into coupled and uncoupled parts allows us to introduce two coefficients (as measures of the coupling of oscillation modes) that integrally consider the effect of the geometry and reinforcement structure on the dynamic-response parameters of the wing. These coefficients describe the elastic and inertial coupling of the natural oscillation modes, respectively. Numerical studies are performed to assess the effect of the orientation of considerably anisotropic carbon-fiber-reinforced plastic (CFRP) layers in the plating on natural frequencies, loss factors, and coefficients of elastic and inertial coupling for several lower tones of natural flexural–torsional oscillations of the wing. Combined analysis of the results obtained shows that, for each pair of flexural–torsional oscillation modes, there are orientation-angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-sectional profile with respect to the major axes of inertia decreases right down to complete extinction due to the generation of elastic coupling in the plating material. These ranges are characterized by two main features: (i) the difference in the natural frequencies of the pair of flexural–torsional oscillation modes is minimal and (ii) the natural frequencies of flexural–torsional oscillations belong to a segment restricted by corresponding partial natural frequencies of the pair of oscillation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Daynes and P. M. Weaver, “Stiffness tailoring using prestress in adaptive composite structures,” Compos. Struct. 106, 282–287 (2013).

    Article  Google Scholar 

  2. M. M. Munk, “Propeller containing diagonally disposed fibrous material,” US Patent No. 2484308 A (1949).

  3. M. M. Munk, “Laminated propeller,” US Patent No. 2599718 A (1952).

  4. R. M. Jones, Mechanics of Composite Materials, 2nd ed. (Taylor, Boca Raton, Fla., 1999).

    Google Scholar 

  5. K. Hayat, A. G. M. de Lecea, C. D. Moriones, and S. K. Ha, “Flutter performance of bend-twist coupled large-scale wind turbine blades,” J. Sound Vib. 370, 149–162 (2016).

    Article  Google Scholar 

  6. L. Wang, A. Kolios, T. Nishino, P.-L. Delafin, and T. Bird, “Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm,” Compos. Struct. 153, 123–138 (2016).

    Article  Google Scholar 

  7. M. R. Motley and R. B. Barber, “Passive control of marine hydrokinetic turbine blades,” Compos. Struct. 110, 133–139 (2014).

    Article  Google Scholar 

  8. W. Li, H. Zhou, H. Liu, Y. Lin, and Q. Xu, “Review on the blade design technologies of tidal current turbine,” Renewable Sustainable Energy Rev. 63, 414–422 (2016).

    Article  Google Scholar 

  9. A. Azzam and W. Li, “Theoretical and experimental methods on bend-twist coupling and damping properties with the relationship to lay-up of the composite propeller marine: A review,” Int. J. Eng. Science Technol. 4, 2907–2917 (2012).

    Google Scholar 

  10. Y. L. Young, “Dynamic hydroelastic scaling of self-adaptive composite marine rotors,” Compos. Struct. 92, 97–106 (2010).

    Article  Google Scholar 

  11. O. A. Bauchau, B. S. Coffenberry, and L. W. Rehfield, “Composite box beam analysis: Theory and experiments,” J. Reinf. Plast. Compos. 6, 25–35 (1987).

    Article  Google Scholar 

  12. C. Libove, “Stresses and rate of twist in single-cell thin-walled beams with anisotropic walls,” AIAA J. 26, 1107–1118 (1988).

    Article  MATH  Google Scholar 

  13. O. A. Bauchau and C. H. Hong, “Nonlinear composite beam theory,” J. Appl. Mech. 55, 156–163 (1988).

    Article  MATH  Google Scholar 

  14. L. W. Rehfield and A. R. Atilgan, “Shear center and elastic axis and their usefulness for composite thin-walled beams,” in Proceedings American Society for Composites 4th Tech. Conf., Blacksburg, Va., 1989, pp. 179–188.

  15. J. Altenbach, H. Altenbach, and V. Matzdorf, “A generalized Vlasov theory for thin-walled composite beam structures,” Mech. Compos. Mater. 30, 57–71 (1994).

    Article  MATH  Google Scholar 

  16. W. K. Lentz, E. A. Armanios, and A. M. Badir, “Constrained optimization of thin-walled composite beams with coupling,” in Proc. AIAA/ASME/ASCE/AHS/ASC 37th Structures, Structural Dynamics and Materials Conf., April 15–17, 1996 (American Inst. of Aeronautics and Astronautics, Reston, Va, 1996), Part 4, pp. 2326–2334.

  17. M. Mitra, S. Gopalakrishnan, and M. S. Bhat, “A new convergent thin walled composite beam element for analysis of box beam structures,” Int. J. Solids Struct. 41, 1491–1518 (2004),

    Article  MATH  Google Scholar 

  18. W. Yu, L. Liao, D. H. Hodges, and V. V. Volovoi, “Theory of initially twisted, composite, thin-walled beams,” Thin-Walled Struct. 43, 1296–1311 (2005).

    Article  Google Scholar 

  19. L. Shan and P. Qiao, “Flexural-torsional buckling of fiber-reinforced plastic composite open channel beams,” Compos. Struct. 68, 211–224 (2005).

    Article  Google Scholar 

  20. R. E. Murray, D. A. Doman, and M. J. Pegg, “Finite element modeling and effects of material uncertainties in a composite laminate with bend-twist coupling,” Compos. Struct. 121, 362–376 (2015).

    Article  Google Scholar 

  21. L. Librescu and O. Song, Thin-Walled Composite Beams. Theory and Application (Springer-Verlag, Dordrecht, 2006).

    Book  MATH  Google Scholar 

  22. L. C. Bank and C. H. Kao, “The influence of geometric and material design variables on the free vibration of thin-walled composite material beams,” J. Vib., Acoust., Stress Reliab. Des. 111, 290–297 (1989).

    Article  Google Scholar 

  23. K. N. Koo and I. Lee, “Aeroelastic behavior of a composite plate wing with structural damping,” Comput. Struct. 50, 167–176 (1994).

    Article  Google Scholar 

  24. E. A. Armanios and A. M. Badir, “Free vibration analysis of anisotropic thin-walled closed-section beams,” AIAA J. 33, 1905–1910 (1995).

    Article  MATH  Google Scholar 

  25. L. R. Centolanza, E. C. Smith, and B. Kumar, “Refined structural modeling and structural dynamics of elastically tailored composite rotor blades,” in Proc. AIAA/ASME/ASCE/AHS/ASC 37th Structures, Structural Dynamics and Materials Conf., April 15–17, 1996 (American Inst. of Aeronautics and Astronautics, Reston, Va, 1996), Part 4, pp. 2002–2012.

  26. Z. Qin and L. Librescu, “Aeroelastic instability of aircraft wings modelled as anisotropic composite thin-walled beams in incompressible flow,” J. Fluids Struct. 18, 43–61 (2003).

    Article  Google Scholar 

  27. S.-Y. Oh, O. Song, and L. Librescu, “Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams,” Int. J. Solids Struct. 40, 1203–1224 (2003).

    Article  MATH  Google Scholar 

  28. M. Kameyama and H. Fukunaga, “Optimum design of composite plate wings for aeroelastic characteristics using lamination parameters,” Comput. Struct. 85, 213–224 (2007).

    Article  Google Scholar 

  29. M. T. Piovan, C. P. Filipich, and V. H. Cortinez, “Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams,” J. Sound Vib. 316, 298–316 (2008).

    Article  Google Scholar 

  30. C. Santiuste, S. Sanchez-Saez, and E. Barbero, “Dynamic analysis of bending-torsion coupled composite beams using the flexibility influence function method,” Int. J. Mech. Sci. 50, 1611–1618 (2008).

    Article  MATH  Google Scholar 

  31. T. P. Vo, J. Lee, and N. Ahn, “On sixfold coupled vibrations of thin-walled composite box beams,” Compos. Struct. 89, 524–535 (2009).

    Article  Google Scholar 

  32. S. H. Mirtalaie and M. A. Hajabasi, “Study of coupled lateral-torsion free vibrations of laminated composite beam: analytical approach,” World Acad. Sci., Eng. Tech. 54, 699–704 (2011).

    Google Scholar 

  33. S. H. Mirtalaie, M. Mohammadi, M. A. Hajabasi, and F. Hejripour, “Coupled lateral-torsion free vibrations analysis of laminated composite beam using differential quadrature method,” World Acad. Sci., Eng. Technol. 67, 117–122 (2012).

    Google Scholar 

  34. V. M. Ryabov and B. A. Yartsev, “Coupled damping vibrations of composite structures,” Vestn. St. Petersburg Univ.: Math. 45, 168–173 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. R. Motley, M. R. Kramer, and Y. L. Young, “Free surface and solid boundary effects on the free vibration of cantilevered composite plates,” Compos. Struct. 96, 365–375 (2013).

    Article  Google Scholar 

  36. S. A. Sina and H. Haddadpour, “Axial-torsional vibrations of rotating pretwisted thin walled composite beams,” Int. J. Mech. Sci. 80, 93–101 (2014).

    Article  Google Scholar 

  37. N. I. Kim and J. Lee, “Divergence and flutter behavior of Beck’s type of laminated box beams,” Int. J. Mech. Sci. 84, 91–101 (2014).

    Article  Google Scholar 

  38. A. Szekrényes, “Coupled flexural-longitudinal vibration of delaminated composite beams with local stability analysis,” J. Sound Vib. 333, 5141–5164 (2014).

    Article  Google Scholar 

  39. A. S. Sayyad and Y. M. Ghugal, “On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results,” Compos. Struct. 129, 177–201 (2015).

    Article  Google Scholar 

  40. V. M. Ryabov and B. A. Yartsev, “Natural damped vibrations of anisotropic box beams of polymer composite materials: 1. Statement of the problem,” Vestn. St. Petersburg Univ.: Math. 49, 130–137 (2016). https://doi.org/10.3103/S1063454116020126

    Article  MathSciNet  MATH  Google Scholar 

  41. V. M. Ryabov and B. A. Yartsev, “Natural damped vibrations of anisotropic box beams of polymer composite materials. 2. Numerical experiments,” Vestn. St. Petersburg Univ.: Math. 49, 260–268 (2016). https://doi.org/10.3103/S1063454116030110

    Article  MathSciNet  MATH  Google Scholar 

  42. V. M. Ryabov and B. A. Yartsev, “Nonclassical vibrations of a monoclinic composite strip,” Vestn. St. Petersburg Univ.: Math. 54, 437–446 (2021). https://doi.org/10.1134/S1063454121040166

    Article  MATH  Google Scholar 

  43. Y. C. Fung, An Introduction to the Theory of Aeroelasticity (Wiley, New York, 1955; Fizmatlit, Moscow, 1959).

  44. K. Washizu, Variational Methods in Elasticity and Plasticity (Pergamon, Oxford, 1982; Mir, Moscow, 1987).

  45. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. M. Ryabov or B. A. Yartsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Arutyunyan

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabov, V.M., Yartsev, B.A. Control of Composite-Wing Oscillation Coupling. Vestnik St.Petersb. Univ.Math. 56, 252–260 (2023). https://doi.org/10.1134/S1063454123020152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454123020152

Keywords:

Navigation