Skip to main content
Log in

On Opto-Thermally Excited Parametric Oscillations of Microbeam Resonators. I

  • MECHANICS
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The present work is the first part of a study of nonlinear dynamics of parametrically excited transverse oscillations of a clamped-clamped microbeam (the basic sensory element of a promising class of microsensors of various physical quantities) under exposure to laser-induced opto-thermal effects in the form of periodically generated pulses affecting a certain part of the beam-element surface. An analytical solution of the heat-transfer problem for steady harmonic temperature distribution in the resonator volume is found. The static and dynamic components of the temperature-induced axial force and transverse moment are determined. Discretization of the nonlinear coupled partial differential equations describing the longitudinal-transverse vibrations of the resonator is performed using the Galerkin method. Using the asymptotic method of multiple scales, an approximate analytical solution for the nonlinear dynamics problem under the conditions of primary parametric resonance is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. I. Vorobyev, I. V. Sergeichev, A. A. Karabutov, E. A. Mironova, E. V. Savateeva, and I. Sh. Akhatov, “Application of the optoacoustic method to assess the effect of voids on the crack resistance of structural carbon plastics,” Acoust. Phys. 66, 132–136 (2020). https://doi.org/10.1134/S1063771020020153

    Article  Google Scholar 

  2. G. Yan, S. Raetz, N. Chigarev, Ja. Blondeau, V. E. Gusev, and V. Tournat, “Cumulative fatigue damage in thin aluminum films evaluated non-destructively with lasers via zero-group-velocity Lamb modes,” NDT E Int. 116, 102323 (2020). https://doi.org/10.1016/j.ndteint.2020.102323

    Article  Google Scholar 

  3. Yu. Pan, C. Rossignol, and B. Audoin, “Acoustic waves generated by a laser line pulse in cylinders; Application to the elastic constants measurement,” J. Acoust. Soc. Am. 115, 1537–1545 (2004). https://doi.org/10.1121/1.1651191

    Article  Google Scholar 

  4. G. Chow, E. Uchaker, G. Cao, and Ju. Wang, “Laser-induced surface acoustic waves: An alternative method to nanoindentation for the mechanical characterization of porous nanostructured thin film electrode media,” Mech. Mater. 91, 333–342 (2015). https://doi.org/10.1016/J.MECHMAT.2015.10.005

    Article  Google Scholar 

  5. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2, 789–798 (2012). https://doi.org/10.1364/OME.2.000789

    Article  Google Scholar 

  6. P. H. Otsuka, S. Mezil, O. Matsuda, M. Tomoda, A. A. Maznev, T. Gan, N. Fang, N. Boechler, V. E. Gusev, and O. B. Wright, “Time-domain imaging of gigahertz surface waves on an acoustic metamaterial,” New J. Phys. 20, 013026 (2018). https://doi.org/10.1088/1367-2630/AA9298

    Article  Google Scholar 

  7. C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: A solution for practical application,” Biomed. Opt. Express 5, 1403–1418 (2014). https://doi.org/10.1364/BOE.5.001403

    Article  Google Scholar 

  8. L. M. Phinney, K. A. Klody, Jo. T. Sackos, and Je. A. Walraven, “Damage of MEMS thermal actuators heated by laser irradiation,” in Reliability, Packaging, Testing and Characterization of MEMS/MOEMS IV: Proc. MOEMS–MEMS Micro and Nanofabrication, San Jose, Calif., USA, 2005; Proc. SPIE 5716, 81–88 (2005). https://doi.org/10.1117/12.594408

    Article  Google Scholar 

  9. J. R. Serrano and L. M. Phinney, “Displacement and thermal performance of laser-heated asymmetric MEMS actuators,” J. Microelectromech. Syst. 17, 166–174 (2008). https://doi.org/10.1109/JMEMS.2007.911945

    Article  Google Scholar 

  10. A. Mai, C. Bunce, R. Hübner, D. Pahner, and U. A. Dauderstädt, “In situ bow change of Al-alloy MEMS micromirrors during 248-nm laser irradiation,” J. Micro/Nanolithogr., MEMS, MOEMS 15, 035502 (2016). https://doi.org/10.1117/1.JMM.15.3.035502

    Article  Google Scholar 

  11. J. D. Zook, D. W. Burns, W. R. Herb, H. Guckel, J. W. Kang, and Y. Ahn, “Optically excited self-resonant microbeams,” Sens. Actuators A: Phys. 52, 92–98 (1996). https://doi.org/10.1016/0924-4247(96)80131-2

    Article  Google Scholar 

  12. T. Yang and Y. Bellouard, “Laser-induced transition between nonlinear and linear resonant behaviors of a micromechanical oscillator,” Phys. Rev. Appl. 7, 064002 (2017). https://doi.org/10.1103/PhysRevApplied.7.064002

    Article  Google Scholar 

  13. R. J. Dolleman, S. Houri, A. Chandrashekar, F. Alijani, H. S. J. van der Zant, and P. G. Steeneken, “Opto-thermally excited multimode parametric resonance in graphene membranes,” Sci. Rep. 8, 9366 (2018). https://doi.org/10.1038/s41598-018-27561-4

    Article  Google Scholar 

  14. A. T. Zehnder, R. H. Rand, and S. Krylov, “Locking of electrostatically coupled thermo-optically driven MEMS limit cycle oscillators,” Int. J. Non-Linear Mech. 102, 92–100 (2018). https://doi.org/10.1016/J.IJNONLINMEC.2018.03.009

    Article  Google Scholar 

  15. A. Bhaskar, B. Shayak, R. H. Rand, and A. T. Zehnder, “Synchronization characteristics of an array of coupled MEMS limit cycle oscillators,” Int. J. Non-Linear Mech. 128, 103634 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103634

    Article  Google Scholar 

  16. N. F. Morozov and P. E. Tovstik, “Dynamic loss of stability of a rod under longitudinal load lower than the Eulerian load,” Dokl. Phys. 58, 510–513 (2013). https://doi.org/10.1134/S102833581311013X

    Article  Google Scholar 

  17. E. C. Carvalho, P. B. Goncalves, and G. Rega, “Multiple internal resonances and nonplanar dynamics of a cruciform beam with low torsional stiffness,” Int. J. Solids Struct. 121, 117–134 (2017). https://doi.org/10.1016/j.ijsolstr.2017.05.020

    Article  Google Scholar 

  18. E. A. R. Ribeiro, S. Lenci, and C. E. N. Mazzilli, “Modal localisation in a beam modelled as a continuous system: A discussion on the use of auxiliary oscillators,” J. Sound Vib. 485, 115595 (2020). https://doi.org/10.1016/j.jsv.2020.115595

    Article  Google Scholar 

  19. S. Lenci, “Isochronous beams by an inclined roller support,” J. Appl. Mech. 85, 091008 (2018). https://doi.org/10.1115/1.4040453

    Article  Google Scholar 

  20. W. Lacarbonara, G. Rega, and A. H. Nayfeh, “Resonant nonlinear normal modes. Part I: Analytical treatment for structural one-dimensional systems,” Int. J. Non-Linear Mech. 38, 851–872 (2003). https://doi.org/10.1016/S0020-7462(02)00033-1

    Article  MATH  Google Scholar 

  21. L. Manevitch, “New approach to beating phenomenon in coupled nonlinear oscillatory chains,” Arch. Appl. Mech. 77, 301–312 (2007). https://doi.org/10.1007/s00419-006-0081-1

    Article  MATH  Google Scholar 

  22. P. N. Kambali and A. K. Pandey, “Nonlinear coupling of transverse modes of a fixed–fixed microbeam under direct and parametric excitation,” Nonlinear Dyn. 87, 1271–1294 (2017). https://doi.org/10.1007/s11071-016-3114-5

    Article  MATH  Google Scholar 

  23. F. Clementi, S. Lenci, and G. Rega, “1:1 internal resonance in a two d.o.f. complete system: A comprehensive analysis and its possible exploitation for design,” Meccanica 55, 1309–1332 (2020). https://doi.org/10.1007/s11012-020-01171-9

    Article  MathSciNet  Google Scholar 

  24. L. Ruzziconi, N. Jaber, L. Kosuru, M. L. Bellaredj, and M. I. Younis, “Experimental and theoretical investigation of the 2:1 internal resonance in the higher-order modes of a MEMS microbeam at elevated excitations,” J. Sound Vib. 499, 115983 (2021). https://doi.org/10.1016/j.jsv.2021.115983

    Article  Google Scholar 

  25. M. J. Leamy and O. Gottlieb, “Internal resonances in whirling strings involving longitudinal dynamics and material non-linearities,” J. Sound Vib. 236, 683–703 (2000). https://doi.org/10.1006/jsvi.2000.3039

    Article  Google Scholar 

  26. D. A. Kovriguine, G. A. Maugin, and A. I. Potapov, “Multiwave nonlinear couplings in elastic structures. Part I. One-dimensional examples,” Int. J. Solids Struct. 39, 5571–5583 (2002). https://doi.org/10.1016/S0020-7683(02)00365-7

    Article  MATH  Google Scholar 

  27. D. A. Kovriguine, G. A. Maugin, and A. I. Potapov, “Multiwave non-linear couplings in elastic structures. Part II: Two-dimensional example,” J. Sound Vib. 263, 1055–1069 (2003). https://doi.org/10.1016/S0022-460X(03)00274-8

    Article  Google Scholar 

  28. N. Srinil and G. Rega, “Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables,” J. Sound Vib. 310, 230–242 (2008). https://doi.org/10.1016/j.jsv.2007.07.056

    Article  Google Scholar 

  29. X.-D. Yang and W. Zhang, “Nonlinear dynamics of axially moving beam with coupled longitudinal–transversal vibrations,” Nonlinear Dyn. 78, 2547–2556 (2014). https://doi.org/10.1007/s11071-014-1609-5

    Article  Google Scholar 

  30. A. K. Belyaev, N. F. Morozov, P. E. Tovstik, and T. P. Tovstik, “Stability of a flexible vertical rod on a vibrating support,” Vestn. St. Petersburg Univ.: Math. 51, 296–304 (2018). https://doi.org/10.3103/S1063454118030020

    Article  MathSciNet  MATH  Google Scholar 

  31. A. K. Belyaev, Ch.-Ch. Ma, N. F. Morozov, P. E. Tovstik, T. P. Tovstik, and A. O. Shurpatov, “Dynamics of a rod undergoing a longitudinal impact by a body,” Vestn. St. Petersburg Univ.: Math. 50, 310–317 (2017). https://doi.org/10.3103/S1063454117030050

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Saetta, V. Settimi, and G. Rega, “Minimal thermal modeling of two-way thermomechanically coupled plates for nonlinear dynamics investigation,” J. Therm. Stresses 43, 345–371 (2020). https://doi.org/10.1080/01495739.2019.1704669

    Article  Google Scholar 

  33. D. A. Indeitsev and E. V. Osipova, “Two-temperature model of optical excitation of acoustic waves in conductors,” Dokl. Phys. 62, 136–140 (2017). https://doi.org/10.1134/S1028335817030065

    Article  Google Scholar 

  34. Y. Sun, S. Liu, Z. Rao, Y. Li, and J. Yang, “Thermodynamic response of beams on Winkler foundation irradiated by moving laser pulses,” Symmetry 10, 328 (2018). https://doi.org/10.3390/sym10080328

    Article  MATH  Google Scholar 

  35. C. Wen, L. Tang, and G. Yang, “Buckling and post-buckling of pinned Euler beams on weakened Winkler foundation under thermal loading,” J. Therm. Stresses 43, 529–542 (2020). https://doi.org/10.1080/01495739.2020.1734128

    Article  Google Scholar 

  36. B. Gu and T. He, “Investigation of thermoelastic wave propagation in Euler–Bernoulli beam via nonlocal strain gradient elasticity and G-N theory,” J. Vib. Eng. Technol. 9, 715–724 (2021). https://doi.org/10.1007/s42417-020-00277-4

    Article  Google Scholar 

  37. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, O. V. Privalova, and L. V. Shtukin, “Stability of the Bernoulli–Euler beam in coupled electric and thermal fields,” Dokl. Phys. 63, 342–347 (2018). https://doi.org/10.1134/S1028335818080086

    Article  Google Scholar 

  38. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, O. V. Privalova, B. N. Semenov, and L. V. Shtukin, “Bernoulli–Euler beam under action of a moving thermal source: Characteristics of the dynamic behavior,” Dokl. Phys. 64, 185–188 (2019). https://doi.org/10.1134/S1028335819040050

    Article  Google Scholar 

  39. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, O. V. Privalova, and L. V. Shtukin, “Stability of the Bernoulli–Euler beam under the action of a moving thermal source,” Dokl. Phys. 65, 67–71 (2020). https://doi.org/10.1134/S102833582002007X

    Article  Google Scholar 

  40. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, and L. V. Shtukin, “Nonlinear interaction of longitudinal and transverse vibrations of a rod at an internal combinational resonance in view of opto-thermal excitation of N/MEMS,” J. Sound Vib. 509, 116247 (2021). https://doi.org/10.1016/j.jsv.2021.116247

    Article  Google Scholar 

  41. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, and L. V. Shtukin, “Nonlinear modal interaction between longitudinal and bending vibrations of a beam resonator under periodic thermal loading,” Vestn. St. Petersburg Univ.: Math. 55, 212–228 (2022). https://doi.org/10.1134/S106345412202008X

    Article  MATH  Google Scholar 

  42. D. W. Tang and N. Araki, “Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses,” Int. J. Heat and Mass Transfer 42, 855–860 (1999). https://doi.org/10.1016/S0017-9310(98)00244-0

    Article  MATH  Google Scholar 

  43. K. Cole, J. Beck, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions (Taylor & Francis, Boca Raton, Fla., 2011).

    MATH  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, grant no. 20-01-00537.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov or L. V. Shtukin.

Additional information

Translated by A. Ovchinnikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, N.F., Indeitsev, D.A., Lukin, A.V. et al. On Opto-Thermally Excited Parametric Oscillations of Microbeam Resonators. I. Vestnik St.Petersb. Univ.Math. 56, 231–244 (2023). https://doi.org/10.1134/S1063454123020127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454123020127

Keywords:

Navigation