Skip to main content
Log in

New Genetic Variants of the Cholera Agent and Their Distribution in Endemic Countries and Russia

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

In the course of the three waves of the seventh cholera pandemic, the genome of the pathogen has undergone significant changes, which resulted in the emergence of new genetic variants with a high pathogenic and epidemic in the last decade. The aim of this study is to investigate the genomic diversity of the cholera agent and the prevalence of new genetic variants both in cholera-endemic regions and Russia, as well as to identify their phylogenetic relations. To search for new variants of the pathogen, bioinformatic analyses of the whole genome nucleotide sequences of 124 V. cholerae El Tor strains have been carried out. These strains were previously obtained by us or taken from the NCBI Gen Bank and European Nucleotide Archive database. Phylogenetic relations have been established based on SNP analysis for 115 different strains isolated in Asia, Africa, Russia, and Ukraine during three waves of the pandemic. Genomic analyses have been performed for 91 strains isolated in seven endemic countries between 2007 and 2019. According to the sets of mutant virulence and epidemicity genes localized in mobile genetic elements (CTXφ prophage, pathogenicity island VPI-1, and pandemic island VSP-II) and the core region, 74.7% of the studied strains are classified as new genetic variants of the pathogen. The genomic analyses of toxigenic strains from Russia and Ukraine (1970–2014) have revealed five groups that differ in mutations in key genes associated with virulence, epidemic potential, and drug resistance. According to the spectrum of mutant genes, 80.0% of the strains imported from endemic regions in recent years (2010–2014) have been recognized as new variants. According to the analysis of phylogenetic relations based on SNP typing of 115 strains, the new variants from Russia and Ukraine are phylogenetically similar to those circulating in Africa and Asia over the past decade. The results obtained are of interest for understanding the molecular mechanisms and dynamics of changes in the most important genetic properties of this pathogen and can also be used to develop methods for gene diagnostics of new variants of the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Kaper, J.B., Morris, J.G., and Levine, M.M., Cholera, Clin. Microbiol. Rev., 1995, vol. 8, no. 1, pp. 48–86. https://doi.org/10.1128/cmr.8.1.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chun, J., Grim, C.J., Hasan, N.A., Lee, J.H., Choi, S.Y., Haleyet, B.J., et al., Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 36, pp. 15442–15447. https://doi.org/10.1073/pnas.0907787106

    Article  PubMed  PubMed Central  Google Scholar 

  3. Olsvik, O., Wahlberg, J., Petterson, B., Uhlén, M., Popovic, T., Wachsmuthet, I.K., et al., Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains, J. Clin. Microbiol., 1993, vol. 31, no. 1, pp. 22–25. https://doi.org/10.1128/jcm.31.1.22-25.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim, E.J., Lee, D., Moon, S.H., Lee, C.H., and Kim, D.W., CTX prophages in Vibrio cholerae O1 strains, J. Microbiol. Biotechnol., 2014, vol. 24, no. 6, pp. 725–731. https://doi.org/10.4014/jmb.1403.03063

    Article  CAS  PubMed  Google Scholar 

  5. Mutreja, A., Kim, D.W., and Thomson, N., Evidence for multiple waves of global transmission within the seventh cholera pandemic, Nature, 2011, vol. 477, no. 7365, pp. 462–465. https://doi.org/10.1038/nature10392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weill, F., Domman, D., Njamkepo, E., Tarr, C., Rauzier, J., Fawal, N., et al., Genomic history of the seventh pandemic of cholera in Africa, Science, 2017, vol. 358, no. 6364, pp. 785–789. https://doi.org/10.1126/science.aad5901.

  7. Monakhova, E.V., Ghosh, A., Mutreja, A., Weill, F., and Ramamurthy, T., Endemic Cholera in India and imported cholera in Russia: What is common?, Probl. Partic. Dangerous Infect., 2020, vol. 3, pp. 17–26. https://doi.org/10.21055/0370-1069-2020-3-17-26

    Article  Google Scholar 

  8. Safa, A., Nair, G.B., and Kong, R.Y., Evolution of new variants of Vibrio cholerae O1, Trends Microbiol., 2010, vol. 18, no. 1, pp. 46–54. https://doi.org/10.1016/j.tim.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  9. Nair, G.B., Faruque, S.M., Bhuiyan, N.A., Kamruzzaman, M., Siddique, A.K., and Sack, D.A., New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh, J. Clin. Microbiol., 2002, vol. 40, no. 9, pp. 3296–3299. https://doi.org/10.1128/JCM.40.9.3296-3299.2002

    Article  PubMed  PubMed Central  Google Scholar 

  10. Smirnova, N.I., Zadnova, S.P., Shashkova, A.V., and Kutyrev, V.V., Genome variability in the altered variants of Vibrio cholerae biovar El Tor isolated in Russia, Mol. Genet., Microbiol. Virol., 2011, vol. 26, no. 3, pp. 102–110. https://doi.org/10.3103/S0891416811030062

    Article  Google Scholar 

  11. Mironova, L.V., Gladkikh, A.S., Ponomareva, A.S., Feranchuk, S.I., Bochalgin, N.O., Basov, E.A., et al., Comparative genomics of Vibrio cholerae El Tor strains isolated at epidemic complications in Siberia and at the Far East, Infect., Genet. Evol., 2018, vol. 60, pp. 80–88. https://doi.org/10.1016/j.meegid.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  12. Reimer, A.R., Domselaar, G.V., Stroika, S., Walker, M., Kent, H., Tarr, C., et al., Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa, Emerging Infect. Dis., 2011, vol. 17, no. 11, pp. 2113–2121. https://doi.org/10.3201/eid1711.110794

    Article  CAS  Google Scholar 

  13. Talkington, D., Bopp, C., Tarr, C., Parsons, M.B., Dahour, G., Freeman, M., et al., Characterization of toxigenic Vibrio cholerae from Haiti, 2010–2011, Emerging Infect. Dis., 2011, vol. 17, no. 11, pp. 2122–2129. https://doi.org/10.3201/eid1711.110805

    Article  CAS  Google Scholar 

  14. Ghosh, P., Sinha, R., Samanta, P., Saha, D.R., Koley, H., Dutta, S., et al., Haitian variant Vibrio cholerae O1 strains manifest higher virulence in animal models, Front. Microbiol., 2019, no. 10, p. 111. https://doi.org/10.3389/fmicb.2019.00111

  15. Naha, A., Mandal, S.R., Samanta, P., Saha, R.N., Shaw, S., Ghosh, A., et al., Deciphering the possible role of ctxB7 allele on higher production of cholera toxin by Haitian variant Vibrio cholerae O1, PLoS Neglected Trop. Dis., 2020, vol. 14, no. 4, p. e0008128. https://doi.org/10.1371/journal.pntd.0008128

    Article  CAS  Google Scholar 

  16. Bhandari, M., Jennison, A.V., Rathnayake, I.U., and Huygens, F., Evolution, distribution and genetics of atypical Vibrio cholerae - A review, Infect., Genet. Evol., 2021, vol. 89, p. e104726. https://doi.org/10.1016/j.meegid.2021.104726

    Article  CAS  Google Scholar 

  17. Dziejman, M., Balon, E., Boyd, D., Fraser, C.M., Heidelberg, J.F., and Mekalanos, J.J., Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease, Proc. Natl. Acad. Sci. U. S. A., 2002, vol. 99, no. 3, pp. 1556–1561. https://doi.org/10.3410/f.1004686.53905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murphy, S.G., Johnson, B.A., Ledoux, C.M., and Dörr, T., Vibrio cholerae’s mysterious Seventh Pandemic Island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and cell congregation, PLoS Genet., 2021, vol. 17, no. 6, p. e1009624. https://doi.org/10.1371/journal.pgen.1009624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Taviani, E., Grim, C.J., Choi, J., Chun, J., Haley, B., Hasan, N.A., et al., Discovery of novel Vibrio cholerae VSP-II genomic islands using comparative genomic analysis, FEMS Microbiol. Lett., 2010, vol. 308, no. 2, pp. 130–137. https://doi.org/10.1111/j.1574-6968.2010.02008.x

    Article  CAS  PubMed  Google Scholar 

  20. Okada, K., Roobthaisong, A., Nakagawa, I., Hamada, S., and Chantaroj, S., Genotypic and PFGE/MLVA analyses of Vibrio cholerae O1: geographical spread and temporal changes during the 2007–2010 cholera outbreaks in Thailand, PLoS One, 2012, vol. 8, no. 1, pp. 1–10. https://doi.org/10.1371/journal.pone.0030863

    Article  CAS  Google Scholar 

  21. Smirnova, N.I., Zadnova, S.P., Agafonov, D.A., Shashkova, A.V., Cheldyshova, N.B., and Cherkasov, A.V., Comparative molecular-genetic analysis of mobile elements in natural strains of cholera agent, Russ. J. Genet., 2013, vol. 49, no. 9, pp. 898–908. https://doi.org/10.1134/S1022795413090081

    Article  CAS  Google Scholar 

  22. Dolores, J. and Satchell, K.J., Analysis of Vibrio cholerae genome sequences reveal unique rtxA variants in environmental strains and a rtxA-null mutation in recent altered El Tor isolates, mBio, 2013, vol. 4, no. 2, pp. 1–9. https://doi.org/10.1128/mBio.00624-12

    Article  Google Scholar 

  23. Kim, H.B., Wang, M., Ahmed, S., Park, C.H., LaRocque, R.C., Faruque, A.S.G., et al., Transferable quinolone resistance in Vibrio cholerae, Antimicrob. Agents Chemother., 2010, vol. 54, no. 2, pp. 799–803. https://doi.org/10.1128/AAC.01045-09

    Article  CAS  PubMed  Google Scholar 

  24. Samanta, P., Mandal, R.S., Saha, R.N., Shaw, S., Ghosh, P., Dutta, S., et al., A point mutation in carR is involved in the emergence of polymyxin B-sensitive Vibrio cholerae O1 El Tor biotype by influencing gene transcription, Infect. Immun., 2020, vol. 88, no. 5, p. e00080-20. https://doi.org/10.1128/IAI.00080-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hasan, N.A., Choi, S.Y., Eppinger, M., Clark, P.W., Chen, A., Alam, M., et al., Genomic diversity of 2010 Haitian cholera outbreak strains, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 29, pp. 2010–2017. https://doi.org/pnas.1207359109.

    Article  Google Scholar 

  26. Das, M.M., Bhotra, T., Zala, D., and Singh, D.V., Phenotypic and genetic characteristics of Vibrio cholerae O1 carrying Haitian ctxB and attributes of classical and El Tor biotypes isolated from Silvassa, India, J. Med. Microbiol., 2016, vol. 65, no. 8, pp. 720–728. https://doi.org/10.1099/jmm.0.000282

    Article  CAS  PubMed  Google Scholar 

  27. Khaitovich, A.B., Petrenko, E.V., and Alekseenko, V.V., Molecular-genetic characteristics of Vibrio cholerae O1/non O1 strains isolated from humans during various epidemic processes, Sbornik trudov 9-oi Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem “MOLEKULYaRNAYa DIAGNOSTIKA 2017" (Proc. 9th All-Russian Scientific and Practical Conference with International Participation “MOLECULAR DIAGNOSTICS 2017”), Moscow, 2017, vol. 1, pp. 343–344.

  28. Ekeng, E., Tchatchouang, S., Akenji, B., Issaka, B.B., Akintayo, I., Chukwu, C., et al., Regional sequencing collaboration reveals persistence of the T12 Vibrio cholerae O1 lineage in West Africa, eLife, 2021, vol. 18, no. 10, p. e65159. https://doi.org/10.7554/eLife.65159

    Article  Google Scholar 

  29. Son, M.S., Megli, C.J., Kovacikova, G., Qadri, F., and Taylor, R.K., Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes, J. Clin. Microbiol., 2011, vol. 49, no. 11, pp. 3739–3749. https://doi.org/10.1128/JCM.01286-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Satchell, K.J.F., Jones, C.J., Wong, J., Queen, J., Agarwal, S., and Yildiz, F.H., Phenotypic analysis reveals that the 2010 Haiti cholera epidemic is linked to a hypervirulent strain, Infect. Immun., 2016, vol. 84, no. 9, pp. 2473–2481. https://doi.org/10.1128/IAI.00189-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Smirnova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

Translated by T. Kuznetsova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, N.I., Rybal’chenko, D.A., Plekhanov, N.A. et al. New Genetic Variants of the Cholera Agent and Their Distribution in Endemic Countries and Russia. Mol. Genet. Microbiol. Virol. 38, 8–15 (2023). https://doi.org/10.3103/S0891416823010093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823010093

Keywords:

Navigation