Skip to main content
Log in

In Pseudomonas syringae pv. phaseolicola NPS3121 the Regulator HrpL is Required for Siderophore Biosynthesis

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

The ability of P. syringae pv. phaseolicola to cause halo blight in bean cultivars is mainly determined by pathogenicity and virulence factors. An important pathogenicity component of P. syringae pv. phaseolicola is the type III secretion system (T3SS) that allows the secretion of effector proteins within the host cells, suppressing and modulating the host defense system. The hrpL gene encodes an alternative sigma factor, HrpL, essential for expressing genes involved in forming the T3SS. In several P. syringae pathovars, the biosynthesis of T3SS, siderophores, and some phytotoxins are coordinated by the GacS/GacA system. However, the regulatory connection between the GacS/GacA system, hrp intermediary regulators, and genes involved in synthesizing virulence factors is not fully described. In this study, the participation of HrpL in the production of phaseolotoxin and siderophores in P. syringae pv. phaseolicola NPS3121 was evaluated. An effective knockout strategy allowed the mutating of the hrpL gene. The mutation abolished the transcription of hrpL; consequently, the mutant was unable to cause disease on bean pods. Phaseolotoxin and siderophore analysis revealed that in P. syringae pv. phaseolicola NPS3121, HrpL does not regulate the phaseolotoxin synthesis but is necessary to control siderophore biosynthesis. HrpL controls siderophore biosynthesis by the fur gene regulation. These results reveal a new transcriptional regulatory connection between HrpL and the control of siderophore biosynthesis. The study of these regulatory systems becomes significant in strengthening the understanding of bacterial pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Lamichhane, J.R., Messéan, A., and Morris, C.E., Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex annual plants is frequently based on approaches integrating, J. Gen. Plant Pathol., 2015, vol. 81, pp. 331–350.

    Article  Google Scholar 

  2. Arnold, D.L., Lovell, H.C., Jackson, R.W., and Mansfield, J.W., Pathogen profile Pseudomonas syringae pv. phaseolicola: from ‘has bean’ to supermodel, Mol. Plant Pathol., 2011, vol. 12, pp. 617–627.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arrebola, E., Cazorla, F.M., Perez-García, A., and de Vicente, A., Chemical and metabolic aspects of antimetabolite toxins produced by Pseudomonas syringae pathovars, Toxins, 2011, vol. 3, pp. 1089–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aguilera, S., López-López, K., Nieto, Y., Garcidueñas-Piña, R., Hernández-Guzmán, G., Hernández-Flores, J.L., et al., Functional characterization of the gene cluster from Pseudomonas syringae pv. phaseolicola NPS3121 involved in synthesis of phaseolotoxin, J. Bacteriol., 2007, vol. 189, pp. 2834–2843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arvizu-Gómez, J.L., Hernández-Morales, A., Pacheco-Aguilar, J.R., and Álvarez-Morales, A., Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: Physiology of phytopathogenic bacteria, BMC Microbiol., 2013, vol. 13, p. 81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wagner, S., Grin, I., Malmsheimer, S., Singh, N., Torres-Vargas, C.E., and Westerhausen, S., Bacterial type III secretion systems: A complex device for delivery of bacterial effector proteins into eukaryotic host cells, FEMS Microbiol. Lett., 2018, vol. 365, p. fny201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chatterjee, A., Cui, Y., Yang, H., Collmer, A., Alfano, J.R., and Chatterjee, A.K., GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors, Mol. Plant-Microbe Interact., 2003, vol. 16, pp. 1106–1117.

    Article  CAS  PubMed  Google Scholar 

  8. O’Malley, M.R., Chien, C.-F., Peck, S.C, Lin, N.-C., and Anderson, J.C., A revised model for the role of GacS/GacA in regulating type III secretion by Pseudomonas syringae pv. tomato DC3000, Mol. Plant Pathol., 2020, vol. 21, pp. 139–144.

    Article  PubMed  Google Scholar 

  9. Bender, C.L., Alarcón-Chaidez, F., and Gross, D.C., Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 266–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De la Torre-Zavala, S., Aguilera, S., Ibarra-Laclette, E., Hernández-Flores, J.L., Hernández-Morales, A., Murillo, J., et al., Gene expression of Pht cluster genes and a putative non-ribosomal peptide synthetase required for phaseolotoxin production is regulated by GacS/GacA in Pseudomonas syringae pv. phaseolicola, Res. Microbiol., 2011, vol. 162, pp. 488–498.

    Article  CAS  PubMed  Google Scholar 

  11. Ortiz-Martín, I., Thwaites, R., Macho, A.P., Mansfield, J.W., and Beuzón, C.R., Positive regulation of the Hrp type III secretion system in Pseudomonas syringae pv. phaseolicola, Mol. Plant-Microbe Interact., 2010, vol. 23, pp. 665–681.

    Article  PubMed  Google Scholar 

  12. Sreedharan, A., Penaloza-Vazquez, A., Kunkel, B.N., and Bender, C.L., CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000, Mol. Plant-Microbe Interact., 2006, vol. 19, pp. 768–779.

    Article  CAS  PubMed  Google Scholar 

  13. Xin, X.-F., Kvitko, B., and He, S.Y., Pseudomonas syringae: what it takes to be a pathogen, Nat. Rev. Microbiol., 2018, vol. 16, pp. 316–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holden, V.I. and Bachman, M.A., Diverging roles of bacterial siderophores during infection, Metallomics, 2015, vol. 7, pp. 986–995.

    Article  CAS  PubMed  Google Scholar 

  15. Green, M.R. and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2012.

    Google Scholar 

  16. Windgassen, M., Urban, A., and Jaeger, K.-E., Rapid gene inactivation in Pseudomonas aeruginosa, FEMS Microbiol. Lett., 2000, vol. 193, pp. 201–205.

    Article  CAS  PubMed  Google Scholar 

  17. Aguilera, S., Alvarez-Morales, A., Murillo, J., Hernández-Flores, J.L., Bravo, J., and De la Torre-Zavala, S., Temperature-mediated biosynthesis of the phytotoxin Phaseolotoxin by Pseudomonas syringae pv. phaseolicola depends on the autoregulated expression of the phtABC genes, PLoS One, 2017, vol. 12, p. e0178441.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Owen, J.G. and Ackerley, D.F., Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448A, BMC Microbiol., 2011, vol. 11, pp. 1–16.

    Article  Google Scholar 

  19. Lam, H.N., Chakravarthy, S., Wei, H.-L., Buinguyen, H., Stodghill, P.V., Collmer, A., et al., Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions, PLoS One, 2014, vol. 9, p. e106115.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang, H.J., Lee, J.S., Cha, J.Y., and Baik, H.S., Negative regulation of pathogenesis Pseudomonas syringae pv. tabaci 11528 by ATP-dependent Lon protease, Mol. Cells, 2011, vol. 32, pp. 317–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ringel, M.T. and Brüser, T., The biosynthesis of pyoverdines, Microb. Cell, 2018, vol. 5, pp. 424–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Balasubramanian, D., Schneper, L., Kumari, H., and Mathee, K.A., Dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence, Nucleic Acids Res., 2013, vol. 41, pp. 1–20.

    Article  CAS  PubMed  Google Scholar 

  23. Pasqua, M., Visaggio, D., Lo Sciuto, A., Genah, S., Banin, E., Visca, P., et al., Ferric uptake regulator Fur is conditionally essential in Pseudomonas aeruginosa, J. Bacteriol., 2017, vol. 199, p. e00472-17.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Troxell, B. and Hassan, H.M., Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria, Front. Cell. Infect. Microbiol., 2013, vol. 3, pp. 59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, H., Dong, C., Zhao, T., Han, J., Wang, T., Wen, X., et al., Functional analysis of the ferric uptake regulator gene fur in Xanthomonas vesicatoria, PLoS One, 2016, vol. 11, p. e0149280.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yanisch-Perron, C., Vieira, J., and Messing, J., Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors, Gene, 1985, vol. 33, pp. 103–119.

    Article  CAS  PubMed  Google Scholar 

  27. Peet, R.C., Lindgren, P.B., Willis, D.K., and Panopoulos, N.J., Identification and cloning of genes involved in phaseolotoxin production by Pseudomonas syringae pv. “phaseolicola,” J. Bacteriol., 1986, vol. 166, pp. 1096–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hongoh, Y., Yuzawa, H., Ohkuma, M., and Kudo, T., Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment, FEMS Microbiol. Lett., 2003, vol. 221, pp. 299–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors thank the Consejo Nacional de Ciencia y Tecnologia (CONACyT) for the scholarship granted to Lizeth Guardado-Valdivia. The work reported was funded by research grant CB-2015-01-255155 from the CONACyT, to S. Aguilera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selene Aguilera.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals or human participants performed by any of the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guardado-Valdivia, L., Chacón-López, A., Hernández-Flores, J.L. et al. In Pseudomonas syringae pv. phaseolicola NPS3121 the Regulator HrpL is Required for Siderophore Biosynthesis. Mol. Genet. Microbiol. Virol. 38, 53–60 (2023). https://doi.org/10.3103/S0891416823010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823010044

Keywords:

Navigation