Skip to main content
Log in

Proteomic Analysis in Microbiology

  • REVIEW
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Identification of microorganisms using the method of time-of-flight mass spectrometry has been widely used in various fields of microbiology for more than a decade. Despite its rather narrow area of applicability compared to other areas of proteomic analysis, this technology has developed significantly, making it a tangible competitor to the traditional bacteriological method. Basically, this became possible due to the expansion of databases of comparative mass spectra of microorganisms and the capabilities of specialized programs. However, in addition to determining the taxonomic affiliation, in clinical or research microbiology, problems are often solved to determine the structure, properties, or number of specific proteins. The range of practical application of the results of proteomic analysis is very wide. In the field of medicine, this is the search for vaccines, markers of diseases of various etiologies, analysis of antibodies, and monitoring the effectiveness of therapeutic measures. In bacteriology or virology, the study of the properties of an infectious agent, as well as the pathogenesis of the disease it causes. In recent years, the range of possibilities of proteomic and bioinformatics has been continuously expanding, and the methods themselves have been improved. The combination of modern software systems with the capabilities of analytical equipment makes it possible to supplement the results of proteomic analysis with data from the fields of genomics, transcriptomics, and metabolomics. Such a trend in the future will lead to the possibility of a comprehensive laboratory assessment of any changes in the cell of the microorganism. In addition, this will contribute to the emergence of the most accurate and universal taxonomic systematization of known species, taking into account data on their genomic and proteomic composition. This review briefly describes the application of existing methods of proteomic analysis to the study of individual proteins or their mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Maccarrone, G., Bonfiglio, J., Silberstein, S., Turck, C., and Martins-de-Souza, D., Characterization of a protein interactome by co-immunoprecipitation and shotgun mass spectrometry, Methods Mol. Biol., 2017, vol. 1546, pp. 223–234. https://doi.org/10.1007/978-1-4939-6730-8_19

    Article  CAS  PubMed  Google Scholar 

  2. Noor, Z., Beom, S., Baker, M., Ranganathan, S., and Mohamedali, A., Mass spectrometry-based protein identification in proteomics—a review, Briefings Bioinf., 2021, vol. 22, no. 2, pp. 1620–1638. https://doi.org/10.1093/bib/bbz163

    Article  CAS  Google Scholar 

  3. Haraf, A., Mensching, L., Keller, C., Rading, S., Scheffold, M., Palkowitsch, L., et al., Systematic affinity purification coupled to mass spectrometry identified p62 as part of the cannabinoid receptor CB2 interactome, Front. Mol. Neurosci., 2019, vol. 12, p. 224. https://doi.org/10.3389/fnmol.2019.00224

    Article  CAS  Google Scholar 

  4. Strasser, S., Ghazi, P., Starchenko, A., Boukhali, M., Edwards, A., Suarez-Lopez, L., et al., Substrate-based kinase activity inference identifies MK2 as driver of colitis, Integr. Biol., 2019, vol. 11, pp. 301–314.

    Article  Google Scholar 

  5. Keller, L., Babin, B., Lakemeyer, M., and Bogyo, M., Activity-based protein profiling in bacteria: Applications for identification of therapeutic targets and characterization of microbial communities, Curr. Opin. Chem. Biol., 2020, vol. 54, pp. 45–53. https://doi.org/10.1016/j.cbpa.2019.10.007

    Article  CAS  PubMed  Google Scholar 

  6. Bender, J. and Schmidt, C., Mass spectrometry of membrane protein complexes, Biol. Chem., 2019, vol. 400, no. 7, pp. 813–829. https://doi.org/10.1515/hsz-2018-0443

    Article  CAS  PubMed  Google Scholar 

  7. Low, T., Syafruddin, S., Mohtar, M., Vellaichamy, A., Rahman, N., Pung, Y., et al., Recent progress in mass spectrometry-based strategies for elucidating protein-protein interactions, Cell. Mol. Life Sci., 2021, vol. 78, no. 13, pp. 5325–5339. https://doi.org/10.1007/s00018-021-03856-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vitorino, R., Guedes, S., Trindade, F., Correia, I., Moura, G., Carvalho, P., et al., De novo sequencing of proteins by mass spectrometry, Expert Rev. Proteomics, 2020, vol. 17, nos. 7–8, pp. 595–607. https://doi.org/10.1080/14789450.2020.1831387

    Article  CAS  PubMed  Google Scholar 

  9. Johnson, R., Searle, B., Nunn, B., Gilmore, J., Phillips, M., Amemiya, C., et al., Assessing protein sequence database suitability using de novo sequencing, Mol. Cell. Proteomics, 2020, vol. 19, no. 1, pp. 198–208. https://doi.org/10.1074/mcp.TIR119.001752

    Article  CAS  PubMed  Google Scholar 

  10. Suckau, D., Evers, W., Belau, E., Pengelley, S., Resemann, A., Tang, W., et al., Use of PASEF for accelerated protein sequence confirmation and de novo sequencing with high data quality, Methods Mol. Biol., 2022, vol. 2313, pp. 207–217. https://doi.org/10.1007/978-1-0716-1450-1_12

    Article  CAS  PubMed  Google Scholar 

  11. Lasch, P., Schneider, A., Blumenscheit, C., and Doellinger, J., Identification of microorganisms by liquid chromatography-mass spectrometry (LC-MS1) and in silico peptide mass libraries, Mol. Cell. Proteomics, 2020, vol. 19, no. 12, pp. 2125–2138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sadygov, R., Using SEQUEST with theoretically complete sequence databases, J. Am. Soc. Mass Spectrom., 2015, vol. 26, no. 11, pp. 1858–1864. 5https://doi.org/10.1007/s13361-015-1228-5

  13. Song, Z., Chen, L., Zhang, C., and Xu, D., Design and implementation of probability-based scoring function for peptide mass fingerprinting protein identification, Proc. 2006 Int. Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, 2006, pp. 4556–4559. https://doi.org/10.1109/IEMBS.2006.260150.

  14. Mortensen, P., Gouw, J.W., Olsen, J.V., Ong, S.E., Rigbolt, K.T., Bunkenborg, J., et al., MSQuant, an open-source platform for mass spectrometry-based quantitative proteomics, J. Proteome Res., 2010, vol. 9, pp. 393–403. https://doi.org/10.1021/pr900721e

    Article  CAS  PubMed  Google Scholar 

  15. Shuai, M., Zuo, L.-S.-Y., Miao, Z., Gou, W., Xu, F., Jiang, Z., et al., Multi-omics analyses reveal relationships among dairy consumption, gut microbiota and cardiometabolic health, EBioMedicine, 2021, vol. 66, p. 103284. https://doi.org/10.1016/j.ebiom.2021.103284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, H., Lee, S., and Park, H., Target-small decoy search strategy for false discovery rate estimation, BMC Bioinf., 2019, vol. 20, no. 1, p. 438. https://doi.org/10.1186/s12859-019-3034-8

    Article  CAS  Google Scholar 

  17. Wang, X., Jones, D., Shaw, T., Cho, J., Wang, Y., Tan, H., et al., Target-decoy-based false discovery rate estimation for large-scale metabolite identification, J. Proteome Res., 2018, vol. 17, no. 7, pp. 2328–2334. https://doi.org/10.1021/acs.jproteome.8b00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tyanova, S., Temu, T., and Cox, J., The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc., 2016, vol. 11, pp. 2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  19. Kim, H., Lee, S., and Park, H., Target-small decoy search strategy for false discovery rate estimation, BMC Bioinf., 2019, vol. 20, p. 438. https://doi.org/10.1186/s12859-019-3034-8

    Article  CAS  Google Scholar 

  20. Macek, B., Forchhammer, K., Hardouin, J., Weber-Ban, E., Grangeasse, C., and Mijakovic, I., Protein post-translational modifications in bacteria, Nat. Rev. Microbiol., 2019, vol. 17, no. 11, pp. 651–664. https://doi.org/10.1038/s41579-019-0243-0

    Article  CAS  PubMed  Google Scholar 

  21. Margreitter, C., Petrov, D., and Zagrovic, B., Vienna-PTM web server: a toolkit for MD simulations of protein post-translational modifications, Nucleic Acids Res., 2013, vol. 41, no. W1, pp. W422–W426. https://doi.org/10.1093/nar/gkt416

    Article  PubMed  PubMed Central  Google Scholar 

  22. Svetlicic, E., Doncevic, L., Ozdanovac, L., Janes, A., Tustonic, T., Stajduhar, A., et al., Direct identification of urinary tract pathogens by MALDI-TOF/TOF analysis and de novo peptide sequencing, Molecules, 2022, vol. 27, no. 17, p. 5461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bornberg-Bauer, E., Hlouchova, K., and Lange, A., Structure and function of naturally evolved de novo proteins, Curr. Opin. Struct. Biol., 2021, vol. 68, pp. 175–183. https://doi.org/10.1016/j.sbi.2020.11.010

    Article  CAS  PubMed  Google Scholar 

  24. Lebedev, A., Vasileva, I., and Samgina, T., FT-MS in the de novo top-down sequencing of natural nontryptic peptides, Mass Spectrom. Rev., 2022, vol. 41, no. 2, pp. 284–313. https://doi.org/10.1002/mas.21678

    Article  CAS  PubMed  Google Scholar 

  25. Islam, M., Mohamedali, A., Fernandes, C., Baker, M., and Ranganathan, S., De novo peptide sequencing: deep mining of high-resolution mass spectrometry data, Methods Mol. Biol., 2017, vol. 1549, pp. 119–134. https://doi.org/10.1007/978-1-4939-6740-7_10

    Article  CAS  PubMed  Google Scholar 

  26. Tran, N.H., Zhang, X., Xin, L., Shan, B., and Li, M., De novo peptide sequencing by deep learning, Proc. Natl. Acad. Sci. U. S. A., 2017, vol. 114, pp. 8247–8252. https://doi.org/10.1073/pnas.1705691114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, X., Li, Y., Wu, Z., Wang, H., Tan, H., and Peng, J., JUMP: A tag-based database search tool for peptide identification with high sensitivity and accuracy, Mol. Cell. Proteomics, 2014, vol. 13, pp. 3663–3673. https://doi.org/10.1074/mcp.O114.039586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Medzihradszky, K.F. and Chalkley, R.J., Lessons in de novo peptide sequencing by tandem mass spectrometry, Mass Spectrom. Rev., 2015, vol. 34, no. 1, pp. 43–63. https://doi.org/10.1002/mas.21406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Macek, B., Forchhammer, K., Hardouin, J., Weber-Ban, E., Grangeasse, C., and Mijakovic, I., Protein post-translational modifications in bacteria, Nat. Rev. Microbiol., 2019, vol. 17, no. 11, pp. 651–664. https://doi.org/10.1038/s41579-019-0243-0

    Article  CAS  PubMed  Google Scholar 

  30. Macek, B., Forchhammer, K., Hardouin, J., Weber-Ban, E., Grangeasse, C., and Mijakovic, I., Protein post-translational modifications in bacteria, Nat. Rev. Microbiol., 2019, vol. 17, pp. 651–664. https://doi.org/10.1038/s41579-019-0243-0

    Article  CAS  PubMed  Google Scholar 

  31. Perchey, R.T., Tonini, L., Tosolini, M., Fournié, J.-J., Lopez, F., Besson, A., and Pont, F., PTMselect: Optimization of protein modifications discovery by mass spectrometry, Sci. Rep., 2019, vol. 9, p. 4181. https://doi.org/10.1038/s41598-019-40873-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Q., Shortreed, M.R., Wenger, C.D., Frey, B.L., Schaffer, L.V., Scalf, M., and Smith, L.M., Global post-translational modification discovery, J. Proteome Res., 2017, vol. 16, pp. 1383–1390. https://doi.org/10.1021/acs.jproteome.6b00034

    Article  CAS  PubMed  Google Scholar 

  33. Nesvizhskii, A.I., Proteogenomics: Concepts, applications and computational strategies, Nat. Methods, 2014, vol. 11, p. 1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, Y.F., Arnold, R.J., Li, Y., Radivojac, P., Sheng, Q., and Tang, H.A., Bayesian approach to protein inference problem in shotgun proteomics, J. Comput. Biol., 2009, vol. 16, pp. 1183–1193. https://doi.org/10.1089/cmb.2009.0018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tyanova, S., Temu, T., and Cox, J., The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protoc., 2016, vol. 11, pp. 2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Y., Wang, F., Xu, F., and Yang, T., Mass spectrometry-based protein quantification, Adv. Exp. Med. Biol., 2016, vol. 919, pp. 255–279. https://doi.org/10.1007/978-3-319-41448-5_15

    Article  CAS  PubMed  Google Scholar 

  37. Smith, K., Fields, J., Voogt, R., Deng, B., Lam, Y., and Mintz, K., Alteration in abundance of specific membrane proteins of Aggregatibacter actinomycetemcomitans is attributed to deletion of the inner membrane protein MorC, Proteomics, 2015, vol. 15, no. 11, pp. 1859–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amaranto, M., Vaccarello, P., Correa, E., Barra, J., and Godino, A., Novel intein-based self-cleaving affinity tag for recombinant protein production in Escherichia coli, J. Biotechnol., 2021, vol. 332, pp. 126–134. https://doi.org/10.1016/j.jbiotec.2021.04.003

    Article  CAS  PubMed  Google Scholar 

  39. Lasch, P., Schneider, A., Blumenscheit, C., and Doellinger, J., Identification of microorganisms by liquid chromatography-mass spectrometry (LC-MS 1) and in silico peptide mass libraries, Mol. Cell. Proteomics, 2020, vol. 19, no. 12, pp. 2125– 2139. https://doi.org/10.1074/mcp.TIR120.002061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nahnsen, S., Bielow, C., Reinert, K., and Kohlbacher, O., Tools for label-free peptide quantification, Mol. Cell. Proteomics, 2013, vol. 12, pp. 549–556. https://doi.org/10.1074/mcp.R112.025163

    Article  CAS  PubMed  Google Scholar 

  41. Cox, J., Hein, M., Luber, C., Paron, I., Nagaraj, N., and Mann, M., Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ, Mol. Cell. Proteomics, 2014, vol. 13, pp. 2513–2526. https://doi.org/10.1074/mcp.M113.031591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saleh, S., Staes, A., Deborggraeve, S., and Gevaert, K., Targeted proteomics for studying pathogenic bacteria, Proteomics, 2019, vol. 19, no. 16, p. e1800435. https://doi.org/10.1002/pmic.201800435

    Article  CAS  PubMed  Google Scholar 

  43. Silva, W., Oliveira, L., Soares, S., Sousa, C., Tavares, G., and Resende, C., Quantitative proteomic analysis of the response of probiotic putative Lactococcus lactis NCDO 2118 strain to different oxygen availability under temperature variation, Front. Microbiol., 2019, vol. 10, p. 759.

    Article  Google Scholar 

  44. Ryan, D., Spraggins, J., and Caprioli, R., Protein identification strategies in MALDI imaging mass spectrometry: a brief review, Curr. Opin. Chem. Biol., 2019, vol. 48, pp. 64–72. https://doi.org/10.1016/j.cbpa.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  45. Fujiwara, Y., Furuta, M., Manabe, S., Koga, Y., Yasunaga, M., and Matsumura, Y., Imaging mass spectrometry for the precise design of antibody-drug conjugates, Sci. Rep., 2016, vol. 6, p. 24954. https://doi.org/10.1038/srep24954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brockmann, E., Bauwens, A.D., Soltwisch, J., and Dreisewerd, K., Advanced methods for MALDI-MS imaging of the chemical communication in microbial communities, Anal. Chem., 2019, vol. 91, no. 23, pp. 15081–15089. https://doi.org/10.1021/acs.analchem.9b03772

    Article  CAS  PubMed  Google Scholar 

  47. Baker, T.C., Han, J., and Borchers, C.H., Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging, Curr. Opin. Biotechnol., 2017, vol. 43, pp. 62–69. https://doi.org/10.1016/j.copbio.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  48. Kallback, P., Shariatgorji, M., Nilsson, A., and Andren, P.E., Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections, J. Proteomics, 2012, vol. 75, pp. 4941–4951. https://doi.org/10.1016/j.jprot.2012.07.034

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Sharov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.. This article does not contain any studies involving human participants or animals performed by any of the authors.

Additional information

The article was translated by the authors.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharov, T.N., Viktorov, D.V. & Toporkov, A.V. Proteomic Analysis in Microbiology. Mol. Genet. Microbiol. Virol. 38, 1–7 (2023). https://doi.org/10.3103/S0891416823010081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823010081

Keywords:

Navigation