Skip to main content
Log in

Determining the Antibacterial Effect of Recombinant CpsA-CpsC-L-ACAN Fusion Peptide against E. coli and Staphylococcus aureus

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Increasing the resistance of microorganisms to common antibiotics has led to the discovery of new antimicrobial compounds. Antimicrobial peptides are a suitable option to replace existing antibiotics. Capsular synthesizing enzyme peptides with the ACAN antibacterial sequence are a group of bioactive peptides. In this study, the antimicrobial function of the recombinant peptide CpsA-CpsC-L-ACAN with the Streptococcus agalactiae capsule-synthesizing enzyme and an antibacterial anticancer sequence was evaluated against important nosocomial pathogen bacteria, namely Staphylococcus aureus and E. coli. Based on the obtained results, the recombinant fusion peptide CpsA-CpsC-L-ACAN has good antimicrobial performance. This recombinant fusion peptide has stretching properties and its antibacterial effects can compete with common antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Naghavi, M., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis, Lancet, 2022, vol. 399, pp. 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  Google Scholar 

  2. Fodor, A., Abate, B.A., Deák, P., Fodor, L., Gyenge, E., Klein, M.G., et al., Multidrug resistance (MDR) and collateral sensitivity in bacteria, with special attention to genetic and evolutionary aspects and to the perspectives of antimicrobial peptides–a review, Pathogens, 2020, vol. 9, pp. 522–575. https://doi.org/10.3390/pathogens9070522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alkofide, H., Alhammad, A.M., Alruwaili, A., Aldemerdash, A., Almangour, T.A., Alsuwayegh, A., et al., Multidrug-resistant and extensively drug-resistant Enterobacteriaceae: prevalence, treatments, and outcomes–a retrospective cohort study, Infect. Drug Resist., 2020, vol. 13, pp. 4653–4662. https://doi.org/10.2147%2FIDR.S283488.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dijksteel, G.S., Ulrich, M.M.W., Middelkoop, E., and Boekema, B.K.H.L., Review: lessons learned from clinical trials using antimicrobial peptides (AMPs), Front. Microbiol., 2021, vol. 22, p. 616979. https://doi.org/10.3389/fmicb.2021.616979

    Article  Google Scholar 

  5. Enoki, T.A., Silva, L.M., Lorenzon, E.N., Cilli, E.M., Perez, K.R., and Riske, K.A., Antimicrobial peptide K0-W6-Hya1 induces stable structurally modified lipid domains in anionic membranes, Langmuir, 2018, vol. 6, pp. 2014–2025. https://doi.org/10.1021/acs.langmuir.7b03408

    Article  CAS  Google Scholar 

  6. Vicente, C.M., da Silva, D.A., Sartorio, P.V., Silva, T.D., Saad, S.S., Nader, H.B., et al., Heparan sulfate proteoglycans in human colorectal cancer, Anal. Cell. Pathol. (Amsterdam), 2018, vol. 2018, p. 8389595. https://doi.org/10.1155/2018%2F8389595

    Article  Google Scholar 

  7. Dame-Korevaar, A., Fischer, E.A.J, Goot, J.V.d., Stegeman, A., and Mevius, D., Transmission routes of ESBL/pAmpC producing bacteria in the broiler production pyramid, a literature review, Prev. Vet. Med., 2019, vol. 162, pp. 136–150. https://doi.org/10.1016/j.prevetmed.2018.12.002

    Article  PubMed  Google Scholar 

  8. Garretto, A., Miller-Ensminger, T., Ene, A., Merchant, Z., Shah, A., Gerodias, A., et al., Genomic survey of E. coli from the bladders of women with and without lower urinary tract symptoms, Front. Microbiol., 2020, vol. 4, p. 2094. https://doi.org/10.3389/fmicb.2020.02094

    Article  Google Scholar 

  9. Tewari, R., Ganaie, F., Venugopal, N., Susweta Mitra, S., Shome, R., Shome, B.R., Occurrence and characterization of genetic determinants of β-lactam-resistance in Escherichia coli clinical isolates, Infect., Genet. Evol., 2022, vol. 100, p. 105257. https://doi.org/10.1016/j.meegid.2022.105257

    Article  CAS  PubMed  Google Scholar 

  10. Guo, Y., Song, G., Sun, M., Wang, J., and Wang, Y., Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus, Front. Cell. Infect. Microbiol., 2017, vol. 10, pp. 1–11. https://doi.org/10.3389/fcimb.2020.00107

    Article  Google Scholar 

  11. Clegg, J., Soldaini, E., McLoughlin, R.M., Rittenhouse, S., Bagnoli, F., Phogat, S., Staphylococcus aureus vaccine research and development: the past, present and future, including novel therapeutic strategies, Front. Immunol., 2021, vol. 7, p. 705360. https://doi.org/10.3389/fimmu.2021.705360

    Article  CAS  Google Scholar 

  12. Babakanrad, E., Mohammadian, T., Esmaeili, D., and Behzadi, P., Efficacy of the apoptotic activity of CpsA-CpsC-L-ACAN fusion peptide against HeLa Cell line, Mol. Genet., Microbiol. Virol., 2022, vol. 37, pp. 153–158. https://doi.org/10.3103/S089141682203003X

    Article  CAS  Google Scholar 

  13. Cassini, A., Hogberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., et al., Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis, Lancet Infect. Dis., 2019, vol. 19, pp. 56–66. https://doi.org/10.1016/S1473-3099(18)30605-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Avershina, E., Shapovalova, V., and Shipulin, G., Fighting antibiotic resistance in hospital-acquired infections: current state and emerging technologies in disease prevention, diagnostics and therapy, Front. Microbiol., 2021, vol. 21, p. 707330. https://doi.org/10.3389/fmicb.2021.707330

    Article  Google Scholar 

  15. Akya, A., Chegenelorestani, R., Shahvaisi-Zadeh, J., and Bozorgomid, A., Antimicrobial resistance of Staphylococcus aureus isolated from hospital wastewater in Kermanshah, Iran, Front. Cell. Infect. Microbiol., 2020, vol. 13, pp. 1035–1042. https://doi.org/10.2147/RMHP.S261311

    Article  Google Scholar 

  16. Burnett, M.J.B., and Burnett, A.C., Therapeutic recombinant protein production in plants: Challenges and opportunities, New Phytologist Foundation, 2019, vol. 2, pp. 121–132. https://doi.org/10.1002/ppp3.10073

    Article  Google Scholar 

  17. Burdette, L.A., Leach, S.A., Wong, H.T., and Tullman-Ercek, D., Developing Gram-negative bacteria for the secretion of heterologous proteins, Microb. Cell Fact., 2018, vol. 17, pp. 1–16. https://doi.org/10.1186/s12934-018-1041-5

    Article  CAS  Google Scholar 

  18. Bobde, S.S., Alsaab, F.M., Wang, G., and Hoek, M.L.V., Ab initio designed antimicrobial peptides against Gram-negative bacteria, Front. Microbiol., 2021, vol. 16, p. 715246. https://doi.org/10.3389/fmicb.2021.715246

    Article  Google Scholar 

  19. Malanovic, N. and Lohner, K., Antimicrobial peptides targeting Gram-positive bacteria, Pharmaceuticals (Basel), 2016, vol. 9, p. 59. https://doi.org/10.3390/ph9030059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tornesello, A.L., Borrelli, A., Buonaguro, L., Buonaguro, F.M., and Tornesello, M.L., Antimicrobial peptides as anticancer agents: functional properties and biological activities, Molecules, 2020, vol. 25, p. 2850. https://doi.org/10.3390/molecules25122850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Islamic Azad University, Shahr-e-QOds Beranch, Tehran, Iran for providing experimental facilitates and approval of this topic as a PhD dissertation.

Author information

Authors and Affiliations

Authors

Contributions

E.B., T. M., D.E, and P.B designed the study E.B. performed tests. T.M. and D. E performed data analysis. E. B., T.M and D.E. have written the article. All authors reviewed the article.

Corresponding authors

Correspondence to Taher Mohammadian or Davoud Esmaeili.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

The Ethical Committee of the Islamic Azad University, Shahr-e-QOds Beranch, Tehran, Iran approved the ethical waiver of this project (1401-05-07/07-29-2022).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babakanrad, E., Mohammadian, T., Esmaeili, D. et al. Determining the Antibacterial Effect of Recombinant CpsA-CpsC-L-ACAN Fusion Peptide against E. coli and Staphylococcus aureus. Mol. Genet. Microbiol. Virol. 38, 47–52 (2023). https://doi.org/10.3103/S0891416823010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416823010032

Keywords:

Navigation