Skip to main content
Log in

Laboratory Evaluation Methods of Water Saturation in Shales

  • Published:
Moscow University Geology Bulletin Aims and scope Submit manuscript

Abstract

The content of formation water is among the key parameters in the exploration and exploitation of low-permeability shale reservoirs containing hardly-recoverable hydrocarbon resources. The reliable estimation of this parameter provides an authentic evaluation of hydrocarbon resources. An extensive review of publications is presented on the direct and indirect laboratory techniques to determine the water saturation of unconventional shale reservoirs. The essence, advantages, disadvantages and limitations of the methods are described in detail. It is shown that direct laboratory techniques (the retort method, as well as Zaks and Dean–Stark measurements) that were developed initially for common reservoir rocks produced up to a 50% error for samples of unconventional rocks of hardly-recoverable resources. An evaporation procedure developed specially for low-permeability rocks should be an alternative. The procedure allows one to quantitatively estimate the contents of free and bound water more rapidly, exactly (less than 6.8% error), and efficiently compared to other techniques; moreover, five times less core matter is required for the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Adams, J.W., Stocker, C.D., and La, N.R., Emerging centri-fugal technology in shale hydraulic fracturing waste management, Houston J. Int. Law, 2012, vol. 34, no. 3, pp. 561–606.

    Google Scholar 

  2. Aksel’rod, S.M., Features of determining the IC and bound water volumetric content under NMR studies, Karotazhnik, 2000, no. 68, pp. 5–16.

  3. Andreeva, R.Yu., Comparison of capillary pressure values obtained by centrifugation and capillarimetry methods, Geologiya, 2016, no. 2 (3), pp. 10–15.

  4. Borisenko, S.A., Bogdanovich, N.N., Kozlova, E.V., et al., Estimating lyophilic properties of the Bazhenov Formation rocks by adsorption and NMR methods, Neft. Khoz., 2017, no. 3, pp. 12–17.

  5. Che, C., Glotch, T.D., Bish, D.L., et al., Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals, J. Geophys. Res., 2011, vol. 116, no. E05007, pp. 1–23.

    Article  Google Scholar 

  6. Chenevert, M.E., Shale alteration by water adsorption, J. Petrol. Technol., 1970, vol. 22, no. 09, pp. 1141–1148. https://doi.org/10.2118/2401-PA

    Article  Google Scholar 

  7. Dandekar, A.Y., Petroleum Reservoir Rock and Fluid Properties, Boca Raton: CRC Press; Taylor & Francis Group, 2013.

  8. Dean, E.W. and Stark, D.D., A convenient method for the determination of water in petroleum and other organic emulsions, J. Indust. Eng. Chem., 1920, vol. 12, no. 5, pp. 486–490. https://doi.org/10.1021/ie50125a025

    Article  Google Scholar 

  9. Emdahl, B.A., Core analysis of Wilcox sands, World Oil, 1952, no. 6.

  10. Fettke, C.R., Core studies of the second sand of the Wenango group, from Oil City, Pa, in Trans. AIME, 2013, pp. 219–234.

    Google Scholar 

  11. van Genuchten, M.T., Leij, F.J., and Yates, S.R., The RETC Code for quantifying the hydraulic functions of unsaturated soils. IAG-DW12933934. Robert S. Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency Ada, Oklahoma, USA, 1991. P. 188–232.

  12. Gudok, N.S., Bogdanovich, N.N., and Martynov, V.G., Opredelenie fizicheskikh svoistv neftesoderzhashchikh porod (Determination of the Physical Properties of Oil-Containing Rocks), Moscow: Nedra, 2007.

  13. Hammervold, W.L. and Skjveland, S.M., Improvement of diaphragm method for drainage capillary pressure measurement with micro pore membrane, in Proc. EUROCAS Meet., 1992, pp. 8–10.

  14. Handwerger, D.A., Suarez-Rivera, R., Vaughn, K.I., et al., Improved petrophysical core measurements on tight shale reservoirs using retort and crushed samples, SPE 147456, 2011, pp. 1–21.

    Google Scholar 

  15. Handwerger, D.A., Willberg, D.M., Pagels, M., et al., Reconciling retort versus Dean Stark measurements on tight shales, SPE 159976, 2012, pp. 1–13.

    Google Scholar 

  16. Hensel, W.M.J., An improved summation-of-fluids porosity technique, SPE-9376-PA, 1982, vol. 22, no. 02, pp. 193–201.

  17. Kazak, E.S. and Kazak, A.V., A novel laboratory method for reliable water content determination of shale reservoir rocks, J. Petrol. Sci. Eng., 2019, vol. 183, 106301. http://www.sciencedirect.com/science/article/pii/ S0920410519307223.

    Article  Google Scholar 

  18. Kazak, E.S. and Kazak, A.V., An integrated experimental workflow for formation water characterization in shale reservoirs: a case study of the Bazhenov Formation, SPE J., 2021, vol. 26 (02), no. SPE-205017-PA, pp. 1–16.

  19. Kazak, E.S., Kazak, A.V., Sorokoumova, Ya.V., et al., The efficient method of water content determination in low-permeable rocks of the Bazhenov Formation (Western Siberia), Neft. Khoz., 2019, no. 7, pp. 73–78.

  20. Khanin, A.A., Porody-kollektory nefti i gaza i ikh izuchenie (Petroleum Reservoir Rocks and Their Study), Moscow: Nedra, 1969.

  21. Khanin, A.A. and Korchagin, O.A., Determination of residual water by centrifugation, Nov. Neft. Gas. Tekhn., Nefteprom. Delo, 1962, vol. 1, pp. 29–32.

    Google Scholar 

  22. Konoshonkin, D.V. and Parnachev, S.V., Existing approaches to the tight rock laboratory petrophysics: a critical review, Int. J. Eng. Res. Technol. (IJERT), 2014, vol. 3, no. 10, pp. 710–715.

    Google Scholar 

  23. Kotyakhov, F.I., Fizika neftyanykh i gazovykh kollektorov (Physics of Oil-Bearing Beds and Gas Reservoirs), Moscow: Nedra, 1976.

  24. Labus, M., Labus, K., and Bujok, P., Determination of the pore space parameters in microporous rocks by means of thermal methods, J. Petrol. Sci. Eng., 2015, vol. 127, pp. 482–489. http://www.sciencedirect.com/science/ article/pii/S0920410515000662.

    Article  Google Scholar 

  25. Lebedev, A.F., Pochvennye i gruntovye vody (Soil and Ground Waters), Moscow: Izd. Akad. Nauk SSSR, 1936.

  26. Li, Y., Zhiming, H., Changhong, C., et al., Evaluation method of water saturation in shale: A comprehensive review, Mar. Petrol. Geol., 2021, vol. 128, 105017. https://www.sciencedirect.com/science/article/pii/S0264817221001203.

  27. Liu, C., Litao, M., Xueqing, L., et al., Study and choice of water saturation test method for tight sandstone gas reservoirs, Frontiers in Physics, 2022, vol. 10. https://www. frontiersin.org/article/10.3389/fphy.2022.833940.

  28. Manual of Petroleum Measurement Standards (MPMS), U.S.A., Baltimore, MD: ASTM Intern., 2010, pp. 86–91.

  29. Mavor, M., Shale gas core analysis overview, in SPWLA Topical Conf. on Petrophysical Evaluation of Unconventional Reservoirs, Philadelphia, Pennsylvania, March 15–19, 2009.

  30. McPhee, C., Reed, J., and Zubizarreta, I., Core Analysis: A Best Practice Guide, Netherlands, Amsterdam: Elsevier, 2015.

    Google Scholar 

  31. Mikhailov, S.P. and Mavletov, M.V., Increasing the informativity of capillarimeter investigations using semipermeable membrane method, Neft. Khoz., 2018, no. 7, pp. 78–81.

  32. Neft’. Metod laboratornogo opredleniya ostatochnoi vodonasyshchennosti kollektorov nefti i gaza po zavisimosti nasyshchennosti ot kapillyarnogo davleniya (Oil. Method for Laboratory Determination of Residual Water Saturation of Oil and Gas Reservoirs by the dependence of saturation on capillary pressure), Moscow: Minnefteprom, 1986.

  33. Odusina, E.O., Sondergeld, C., and Rai, C.S., An NMR study of shale wettability, in Canadian Unconventional Resources Conf., Calgary, Alberta, Canada. November, 2011. https://doi.org/10.2118/147371-MS

  34. Prado, J.R. and Vyazovkin, S., Activation energies of water vaporization from the bulk and from laponite, montmorillonite, and chitosan powders, Thermochim. Acta, 2011, no. 524, pp. 197–201.

  35. Recommended Practices for Core Analysis. Recommended Practice 40, Dallas, TX: Am. Petrol. Inst. (API), 1998.

  36. Rubinshtein, L.I., The determination of the buried water content, Bashkir. Neft’, 1950, vol. 2, pp. 27–32.

    Google Scholar 

  37. Sergeev, E.M., Gruntovedenie (Soil Science), Moscow: Mosk. Gos. Univ., 1959.

    Google Scholar 

  38. Shein, E.V., Kurs fiziki pochv: Uchebnik (Course of Soil Physics. A Manual), Moscow: Mosk. Gos. Univ., 2005.

  39. Silich, V.E., Porous waters in rocks of the Bazhenov Formation of the Salym oil field, in Stroenie Neftegaz. Bazhenitov Zapadnoi Sibiri (Structure and Petroleum Potential of Bazhenites in West Siberia), Tyumen’: ZapSibNIGNI, 1985, pp. 87–91.

  40. Slobod, R.L., Chambers, A., and Prehn, W.L., Use of centrifuge for determining connate water, residual oil and capillary curves of small core samples, J. Petrol. Technol., 1951, vol. 3, no. 4, pp. 127–134. https://doi.org/10.2118/951127-G

    Article  Google Scholar 

  41. Smagin, A.V., Soil-hydrological constants: the physical meaning and quantification on the basis of equilibrium centrifugation, Dokl. Ekol. Pochvoved., 2006, vol. 1, no. 1, pp. 31–56.

    Google Scholar 

  42. Sondergeld, C.H., Newsham, K.E., Comisky, J.T., et al., Petrophysical considerations in evaluating and producing shale gas resources, in Soc. Petrol. Engineers. SPE Unconventional Gas Conf., February 23–25, 2010, Pittsburgh, Pennsylvania, USA, 2010, pp. 1–34.

  43. Sulucarnain, I.D., Sondergeld, C.H., and Rai, C.S., An NMR study of shale wettability and effective surface relaxivity, in SPE Canadian Unconventional Resour. Conf. Calgary, Alberta, Canada, October 30, 2012. SPE-162236-MS. https://doi.org/10.2118/162236-MS

  44. Thornton, O.F. and Marshall, D.L., Estimating interstitial water by the capillary pressure method, Trans. AIME, 1947, vol. 170, no. 01, pp. 69–80. https://doi.org/10.2118/947069-G

    Article  Google Scholar 

  45. Zaks, S.L., Sampling and studying core samples for water- and oil saturation, Neft. Khoz., 1947a, vol. 4, pp. 24–30.

    Google Scholar 

  46. Zaks, S.L., Residual water in oil collectors, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, 1947b, vol. 7, pp. 787–794.

    Google Scholar 

  47. Zaks, S.L., Buried water and its significance for oil production, Neft. Khoz., 1947c, vol. 3, pp. 19–25.

    Google Scholar 

  48. Zlochevskaya, R.I. and Korolev, V.A., Elektropoverkhnostnye yavleniya v glinistykh porodakh (Electrical Surface Phenomena in Clayey Rocks), Moscow: Mosk. Gos. Univ., 1988.

  49. Zubkov, M.Yu., The idea of “residual water saturation” and a possible way to evaluate it under laboratory conditions, Karotazhnik, 2015, vol. 7, pp. 63–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Kazak, I. A. Rodkina or Ya. V. Sorokoumova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Rylova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazak, E.S., Rodkina, I.A. & Sorokoumova, Y.V. Laboratory Evaluation Methods of Water Saturation in Shales. Moscow Univ. Geol. Bull. 78, 56–69 (2023). https://doi.org/10.3103/S0145875223010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0145875223010064

Keywords:

Navigation