Skip to main content
Log in

Hybrid twin of RTM process at the scarce data limit

  • Original Research
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

To ensure correct filling in the resin transfer molding (RTM) process, adequate numerical models have to be developed in order to correctly capture its physics, so that this model can be considered for process optimization. However, the complexity of the phenomenon often makes it impossible for numerical models to accurately predict its behavior, limiting its usage. To overcome this limitation, numerical models are enriched with measured data to ensure their correct predictability. Nevertheless, the data used is often limited due to practical constraints, such as a limited number of sensors or the high costs of experimental campaigns. In this context, the present paper demonstrates the implementation of a numerical model enriched with data, called Hybrid Twin applied to the RTM process when few sensors are considered in the mold to be injected. The performances of the developed hybrid twin are tested in a virtual test for the injection of a 2D mold, where the hybrid twin constructed using a simplified numerical model allows to accurately predict a complex model’s resin flow-front over its entire time history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable

Code availability

Provided under request.

References

  1. Fong L, Advani S (1998) Resin transfer molding. Handbook of composites. Springer, Boston, pp 433–455

    Chapter  Google Scholar 

  2. Potter KD (1999) The early history of the resin transfer moulding process for aerospace applications. Composites Part A: Appl Sci Manuf 30(5):619–621

    Article  Google Scholar 

  3. Zienkiewicz OC, Taylor RL (2005) The Finite Element Method for Solid and Structural Mechanics. Elsevier, Amsterdam

    MATH  Google Scholar 

  4. Smith GD, Smith GD, Smith GDS (1985) Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford

    MATH  Google Scholar 

  5. Chinesta F, Cueto E, Abisset-Chavanne E, Duval JL, Khaldi FE (2020) Virtual, digital and hybrid twins: A new paradigm in data-based engineering and engineered data. Archives Comput Methods Eng 27(1):105–134

    Article  MathSciNet  Google Scholar 

  6. Russell SJ (2010) Artificial Intelligence a Modern Approach. Pearson Education Inc, New York

    MATH  Google Scholar 

  7. Goodfellow I, Bengio Y, Courville A (2016) Deep Learn. MIT press, MA, USA

    MATH  Google Scholar 

  8. Wani MA, Bhat FA, Afzal S, Khan AI (2020) Advances in Deep Learning. Springer, Singapore

    Book  MATH  Google Scholar 

  9. Gulli A, Pal S (2017) Deep Learning with Keras. Packt Publishing Ltd, Birmingham, UK

    Google Scholar 

  10. Moya B, González D, Alfaro I, Chinesta F, Cueto E (2019) Learning slosh dynamics by means of data. Comput Mech 64(2):511–523

    Article  MathSciNet  MATH  Google Scholar 

  11. Reille A, Hascoet N, Ghnatios C, Ammar A, Cueto E, Duval JL, Chinesta F, Keunings R (2019) Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit. Comptes Rendus Mécanique 347(11):780–792

    Article  Google Scholar 

  12. Hernández Q, Badías A, González D, Chinesta F, Cueto E (2021) Structure-preserving neural networks. J Comput Phys 426:109950

    Article  MathSciNet  MATH  Google Scholar 

  13. Sancarlos A, Cameron M, Le Peuvedic J-M, Groulier J, Duval J-L, Cueto E, Chinesta F (2021) Learning stable reduced-order models for hybrid twins. Data-Centric Engineering 2

  14. Sancarlos A, Cameron M, Abel A, Cueto E, Duval J-L, Chinesta F (2021) From rom of electrochemistry to ai-based battery digital and hybrid twin. Archives Comput Methods Eng 28(3):979–1015

    Article  MathSciNet  Google Scholar 

  15. Champaney V, Chinesta F, Cueto E (2022) Engineering empowered by physics-based and data-driven hybrid models: A methodological overview. Int J Mater Form 15(3):1–14

    Article  Google Scholar 

  16. Ladevèze P (1985) Sur une famille d’algorithmes en mécanique des structures. Comptes-rendus des séances de l’Académie des sciences. Série 2, Mécanique-physique, Chimie, Sciences de l’univers, Sciences de la Terre 300(2):41–44

  17. Boucard P-A, Ladevèze P (1999) A multiple solution method for non-linear structural mechanics. Mech Eng 50:317–328

    Google Scholar 

  18. Ladevèze P, Passieux J-C, Néron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296

    Article  MathSciNet  MATH  Google Scholar 

  19. Relun N, Néron D, Boucard P-A (2011) Multiscale elastic-viscoplastic computational analysis: a detailed example. European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique 20(7–8):379–409

    MATH  Google Scholar 

  20. Relun N, Néron D, Boucard P-A (2013) A model reduction technique based on the pgd for elastic-viscoplastic computational analysis. Comput Mech 51(1):83–92

    Article  MathSciNet  MATH  Google Scholar 

  21. Néron D, Boucard P-A, Relun N (2015) Time-space pgd for the rapid solution of 3d nonlinear parametrized problems in the many-query context. Int J Numer Methods Eng 103(4):275–292

    Article  MathSciNet  MATH  Google Scholar 

  22. Rodriguez S, Néron D, Charbonnel P-E, Ladevèze P, Nahas G (2019) Non incremental latin-pgd solver for non-linear vibratoric dynamics problems. In: 14ème Colloque National en Calcul des Structures, CSMA 2019

  23. Iturra SR (2021) Abaques virtuelle pour le génie parasismique incluant des parametres associes au chargement. PhD thesis, Université Paris-Saclay

  24. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newtonian Fluid Mech 139(3):153–176

    Article  MATH  Google Scholar 

  25. Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Archives Comput Methods Eng 17(4):327–350

    Article  MathSciNet  MATH  Google Scholar 

  26. Chinesta F, Cueto E (2014) PGD-based Model Mater. Structures and Processes, Springer, Switzerland

    Google Scholar 

  27. Torregrosa S, Champaney V, Ammar A, Herbert V, Chinesta F (2022) Surrogate parametric metamodel based on optimal transport. Mathematics and Computers in Simulation 194:36–63

    Article  MathSciNet  MATH  Google Scholar 

  28. Ammar A, Chinesta F, Cueto E, Doblaré M (2012) Proper generalized decomposition of time-multiscale models. Int J Numer Methods Eng 90(5):569–596

    Article  MathSciNet  MATH  Google Scholar 

  29. Ibáñez R, Ammar A, Cueto E, Huerta A, Duval J-L, Chinesta F (2019) Multiscale proper generalized decomposition based on the partition of unity. Int J Numer Methods Eng 120(6):727–747

    Article  MathSciNet  Google Scholar 

  30. Pasquale A, Ammar A, Falcó A, Perotto S, Cueto E, Duval J-L, Chinesta F (2021) A separated representation involving multiple time scales within the proper generalized decomposition framework. Adv Model Simul Eng Sci 8(1):1–22

    Article  Google Scholar 

  31. Passieux J-C, Ladevèze P, Néron D (2010) A scalable time-space multiscale domain decomposition method: adaptive time scale separation. Comput Mech 46(4):621–633

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee JA, Verleysen M (2007) Nonlinear Dimensionality Reduction. Springer, New York

    Book  MATH  Google Scholar 

  33. Ibáñez R, Abisset-Chavanne E, Ammar A, González D, Cueto E, Huerta A, Duval JL, Chinesta F (2018) A multidimensional data-driven sparse identification technique: the sparse proper generalized decomposition. Complexity 2018

  34. Sancarlos A, Champaney V, Duval J-L, Cueto E, Chinesta F (2021) Pgd-based advanced nonlinear multiparametric regressions for constructing metamodels at the scarce-data limit. arXiv:2103.05358

  35. Sancarlos A, Cueto E, Chinesta F, Duval J-L (2021) A novel sparse reduced order formulation for modeling electromagnetic forces in electric motors. SN Appl Sci 3(3):1–19

    Article  Google Scholar 

  36. Quaranta G, Abisset-Chavanne E, Chinesta F, Duval J-L (2018) A cyber physical system approach for composite part: From smart manufacturing to predictive maintenance. In: AIP conference proceedings, vol 1960, AIP Publishing LLC, pp 020025

  37. Sánchez F, García J, Chinesta F, Gascón L, Zhang C, Liang Z, Wang B (2006) A process performance index based on gate-distance and incubation time for the optimization of gate locations in liquid composite molding processes. Composites Part A: Applied Science and Manufacturing 37(6):903–912

    Article  Google Scholar 

  38. Garcıa J, Gascón L, Chinesta F (2003) A fixed mesh numerical method for modelling the flow in liquid composites moulding processes using a volume of fluid technique. Comput methods Appl Mech Eng 192(7–8):877–893

    Article  MATH  Google Scholar 

  39. Sanchez F, Garcia JA, Gascón L, Chinesta F (2007) Towards an efficient numerical treatment of the transport problems in the resin transfer molding simulation. Comput Methods Appl Mech Eng 196(21–24):2300–2312

    Article  MathSciNet  MATH  Google Scholar 

  40. Quaranta G (2019) Efficient simulation tools for real-time monitoring and control using model order reduction and data-driven techniques. Universitat politécnica de Catalunya, Thesis, École centrale de Nantes

    Google Scholar 

  41. Ghnatios C, Masson F, Huerta A, Leygue A, Cueto E, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput Methods Appl Mechan Eng 213:29–41

    Article  Google Scholar 

  42. Dennis JE Jr, Schnabel RB (1996) Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia, Penn

    Book  MATH  Google Scholar 

  43. Gavin HP (2019) The levenberg-marquardt algorithm for nonlinear least squares curve-fitting problems. Duke University, Department of Civil and Environmental Engineering, p 19

    Google Scholar 

  44. Karhunen K (1946) Zur spektraltheorie stochastischer prozesse. Ann. Acad. Sci, Fennicae, AI, p 34

    MATH  Google Scholar 

  45. Loeve M (1948) Fonctions aléatoires du second ordre. Lévy, Processus Stochastiques et Mouvement Brownien, Gauthier-Villars, Paris

    Google Scholar 

  46. Everson R, Sirovich L (1995) Karhunen-loeve procedure for gappy data. JOSA A 12(8):1657–1664

    Article  Google Scholar 

  47. Fasshauer GE (2007) Meshfree Approximation Methods with MATLAB, vol 6. World Scientific, Hackensack, NJ

    MATH  Google Scholar 

Download references

Acknowledgements

The European MORPHO project is gratefully acknowledged for funding this research activity.

Funding

This research was funded by the H2020 programme, under EU.3.4. - Societal Challenges - Smart, Green And Integrated Transport.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F.C., E.M., M.R, N.M.; methodology, S.R.; software, S.R.; supervision, F.C., E.M., M.R, N.M. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sebastian Rodriguez.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Yes

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors contributed equally to this work.

Appendix A: Approximation of sparse data; the sparse - PGD

Appendix A: Approximation of sparse data; the sparse - PGD

In real-life situations, having access to abundant and structured data is not always possible. In this situation a direct application of the PGD method is unfortunately not possible. To solve this limitation, in [33] an extension of the PGD method was proposed to deal with unstructured data and overcome in this sense the curse of dimensionality. This method is called sparse-PGD.

To illustrate the main ideas on how to determine the PGD decomposition for the case of sparse data, an approximation of a function \(f(\nu _{1},\nu _{2}) \in \mathbb {R}^{2} \rightarrow \mathbb {R}\) is considered here, where its value is known over some P sampling points. In this case, the PGD decomposition is simply determined by solving the following minimization problem:

$$\begin{aligned} \text {min} \left\| { u_{m}(\nu _{1},\nu _{2}) - f(\nu _{1},\nu _{2}) }\right\| _{2}^{2} \end{aligned}$$
(A1)

with \(\left\| {\bullet }\right\| _{2}^{2} = \int _{{\Omega }} (\bullet )^{2} \ d\nu _{1} d\nu _{2}\) and \({\Omega } = {\Omega }_{\nu _{1}} \times {\Omega }_{\nu _{2}}\). From the last expression, \(u_{m}(\nu _{1},\nu _{2})\) corresponds to the PGD decomposition of \(f(\nu _{1},\nu _{2})\), where m terms are considered, this is:

$$\begin{aligned} u_{m}(\nu _{1},\nu _{2}) = \sum \limits _{k=1}^{m} X_{1}^{k}(\nu _{1}) X_{2}^{k}(\nu _{2}) \end{aligned}$$
(A2)

with \(X_{1}^{k}(\nu _{1})\) and \(X_{2}^{k}(\nu _{2})\), \(\forall k \in [1, ... , m]\) the separate variable functions to be determined. Here the PGD functions are not interpolated using, for example, the Finite Element Method (FEM) [3], in this case the functions used are globally defined over the whole interval considered for each variable. The functions that can be used could be for instance, Kriging interpolants functions [33] or radial basis functions [47], just to cite a few. In this context, the PGD functions for the 2D case are constructed as follows:

$$\begin{aligned} X_{1}^{k}(\nu _{1})= & {} \sum \limits _{j=1}^{n_{cp}} {N_{j}^{k}}(\nu _{1}) a_{\nu _{1},j}^{k} = ( \underline{\varvec{N}} _{\nu _{1}}^{k})^{T} \underline{\varvec{a}} _{\nu _{1}}^{k} \end{aligned}$$
(A3)
$$\begin{aligned} X_{2}^{k}(\nu _{2})= & {} \sum \limits _{j=1}^{n_{cp}} {N_{j}^{k}}(\nu _{2}) a_{\nu _{2},j}^{k} = ( \underline{\varvec{N}} _{\nu _{2}}^{k})^{T} \underline{\varvec{a}} _{\nu _{2}}^{k} \end{aligned}$$
(A4)

where \({N_{j}^{k}}(\nu _{i})\) and \(a^{k}_{\nu _{i},j}\) denotes the shape functions and its respective nodal value for variable \(\nu _{i}\) evaluated on the control point j at PGD mode k. If the shape functions are considered to be radial functions of multiquadric type [47], they are given as follows:

$$N_{j}(\nu _{i}) = \sqrt{ c^{2} \left[ (\nu _{i})_{j} - (\nu _{i}) \right] ^{2} + 1 } \ \ \text{for} \ \ j \in [1, ... , n_{cp}] \ \text {and} \ i \in [1,2] $$
(A5)

with \((\nu _{i})_{j}\) the coordinate of the control point associated to variable \(\nu _{i}\) and c a parameter that drives the shape of the function, chosen such as it allows a non over-fitted PGD approximation. These PGD functions are classically determined one after the other in an incremental way, also denoted Greedy process. That is, one considers as known \(m-1\) terms of the decomposition Eq. A2, and seeks the determination of the mode m, i.e., \(u_{m}(\nu _{1},\nu _{2}) = u_{m-1}(\nu _{1},\nu _{2}) + X_{1}^{m}(\nu _{1}) X_{2}^{m}(\nu _{2})\). In this case one reformulates Eq. A1 as follows:

$$ \left\{ X_{1}^{m}(\nu _{1}) , X_{2}^{m}(\nu _{2}) \right\} = \underset{ \lbrace X_{1}^{m}(\nu _{1}) , X_{2}^{m}(\nu _{2}) \rbrace }{\text {arg min}} \Big \Vert X_{1}^{m}(\nu _{1}) X_{2}^{m}(\nu _{2}) - f_{\text {res}}(\nu _{1},\nu _{2}) \Big \Vert _{2}^{2} $$
(A6)

with \(f_{\text {res}}(\nu _{1},\nu _{2}) = f(\nu _{1},\nu _{2}) - u_{m-1}(\nu _{1},\nu _{2})\). By minimizing the expression Eq. A6 yields:

\(\forall {w}^{*}(\nu _{1},\nu _{2}),\)

$$\begin{aligned} \int _{{\Omega }} {w}^{*}(\nu _{1},\nu _{2}) \left[ X_{1}^{m}(\nu _{1}) X_{2}^{m}(\nu _{2}) - f_{\text {res}}(\nu _{1},\nu _{2}) \right] d\nu _{1} d\nu _{2} = 0 \end{aligned}$$
(A7)

However since the information is just known at P sampling points \(( (\nu _{1})_{i},(\nu _{2})_{i}), \forall i \in [1,...,P]\), the test function \({w}^{*}(\nu _{1},\nu _{2})\) is expressed as a set of Dirac delta functions collocated at these points, this is:

$$\begin{aligned}{} & {} {w}^{*}(\nu _{1},\nu _{2}) = {u}^{*}(\nu _{1},\nu _{2}) \sum \limits _{i=1}^{P} \delta ( (\nu _{1})_{i}, (\nu _{2})_{i} )\\= & {} \left[ {X_{1}}^{*}(\nu _{1}) X_{2}^{m}(\nu _{2}) + X_{1}^{m}(\nu _{1}) {X_{2}}^{*}(\nu _{2}) \right] \sum \limits _{i=1}^{P} \delta ((\nu _{1})_{i}, (\nu _{2})_{i})\nonumber \end{aligned}$$
(A8)

where \(\delta ( (\nu _{1})_{i}, (\nu _{2})_{i} )\) here denotes the delta Dirac function evaluated at points \(((\nu _{1})_{i}, (\nu _{2})_{i})\). By replacing \({w}^{*}(\nu _{1},\nu _{2})\) by its sparse version of Eqs. A8 into A7, and developing the expression yields the problems that must be solved to obtain the PGD functions:

Compute \(X_{1}^{m}(\nu _{1})\) by solving:

$$ \int _{{\Omega }} X_{1}^{*}(\nu_1) \sum \limits _{i=1}^{P} \left[ X_{1}^{m}(\nu _{1}) X_{2}^{m}(\nu _{2})^{2} - X_{2}^{m}(\nu _{2}) f_{\text {res}}(\nu _{1},\nu _{2}) \right] \delta ( (\nu _{1})_{i},(\nu _{2})_{i} ) \ d\nu _{1} d\nu _{2} = 0 $$
(A9)

Compute \(X_{2}^{m}(\nu _{2})\) by solving:

$$ \int _{{\Omega }} X_{2}^{*}(\nu_2) \sum \limits _{i=1}^{P} \left[ X_{2}^{m}(\nu _{2}) X_{1}^{m}(\nu _{1})^{2} - X_{1}^{m}(\nu _{1}) f_{\text {res}}(\nu _{1},\nu _{2}) \right] \delta ((\nu _{1})_{i},(\nu _{2})_{i} ) \ d\nu _{1} d\nu _{2} = 0 $$
(A10)

Equations A9 and A10 should be solved alternatively following a fixed-point strategy, where for the resolution of Eq. A9 one considers known the value of function \(X_{2}^{m}(\nu _{2})\), and for the resolution of Eq. A10 one considers \(X_{1}^{m}(\nu _{1})\) known. To illustrate this resolution, but only for the determination of \(X_{1}^{m}(\nu _{1})\), lets define:

$$\begin{aligned} \underline{\underline{\varvec{A}}}^{kl}_{(\nu _{1})_{i}}= & {} \underline{\varvec{N}} _{\nu _{1}}^{k}((\nu _{1})_{i}) \otimes \underline{\varvec{N}} _{\nu _{1}}^{l}((\nu _{1})_{i}) \nonumber \\ \underline{\underline{\varvec{A}}}^{kl}_{(\nu _{2})_{i}}= & {} \underline{\varvec{N}} _{\nu _{2}}^{k}((\nu _{2})_{i}) \otimes \underline{\varvec{N}}_{\nu _{2}}^{l}((\nu _{2})_{i}) \end{aligned}$$
(A11)

where \(\otimes\) denotes a Kronecker tensor product. By using the operators defined in Eq. A11 and approximations of Eq. A3 and A4, one obtains the following system of equations needed to be solved to compute the discretized DOFs related to \(X_{1}^{m}(\nu _{1})\) (\(\underline{\varvec{a}} ^{m}_{\nu _{1}}\)).

$$\begin{aligned} \underline{\underline{\varvec{M}}}_{\nu _{1}} \underline{\varvec{a}} ^{m}_{\nu _{1}} = \underline{\varvec{f}} _{\nu _{1}} \end{aligned}$$
(A12)

where the matrix and vector are respectively given as:

$$\begin{aligned} \underline{\underline{\varvec{M}}}_{\nu _{1}}= & {} \sum _{i=1}^{P} \left[ ( \underline{\varvec{a}} ^{m}_{\nu _{2}})^{T} \underline{\underline{\varvec{A}}}^{m m}_{(\nu _{2})_{i}} \underline{\varvec{a}} ^{m}_{\nu _{2}} \right] \underline{\underline{\varvec{A}}}_{(\nu _{1})_{i}} \nonumber \\ \underline{\varvec{f}} _{\nu _{1}}= & {} \sum _{i=1}^{P} f_{\text {res}}((\nu _{1})_{i},(\nu _{2})_{i}) \underline{\varvec{N}} _{\nu _{1}}^{m}((\nu _{1})_{i}) \underline{\varvec{N}} _{\nu _{2}}^{m}((\nu _{2})_{i})^{T} \underline{\varvec{a}} ^{m}_{\nu _{2}} \end{aligned}$$
(A13)

The extension of the above method to the case of a multidimensional function is straightforward and follows the same methodology, for this case one has:

$$\begin{aligned} \text {min} \left\| { u_{m}(\nu _{1},\nu _{2}, ... \ , \nu _{n}) - f(\nu _{1},\nu _{2}, ... \ , \nu _{n}) }\right\| _{2}^{2} \end{aligned}$$
(A14)

where:

$$\begin{aligned} u_{m}(\nu _{1},\nu _{2}, ... \ , \nu _{n}) = \sum _{k=1}^{m} X_{1}^{k}(\nu _{1}) X_{2}^{k}(\nu _{2}) \ ... \ {X_{n}^{k}}(\nu _{n}) \end{aligned}$$
(A15)

with \(\left\| {\bullet }\right\| _{2}^{2} = \int _{{\Omega }} (\bullet )^{2} \ d \nu _{1} d \nu _{2} \ ... \ d \nu _{n}\), where for this case \({\Omega } = {\Omega }_{\nu _{1}} \times {\Omega }_{\nu _{2}} \times ... \times {\Omega }_{\nu _{n}}\). For this case the same resolution procedure by the fixed-point technique must be applied. The determination of the nodal values of the m PGD function corresponding to parameter \(\nu _{q}\) with \(q \in [1, ... , n]\) is simply given as:

$$\begin{aligned} \underline{\underline{\varvec{M}}}_{\nu _{q}}\underline{\varvec{a}} _{\nu _{q}}^{m} = \underline{\varvec{f}} _{\nu _{q}} \end{aligned}$$
(A16)

where the respective matrix and vector are computed as follows:

$$\begin{aligned} \underline{\underline{\varvec{M}}}_{\nu _{q}}= & {} \sum \limits _{i=1}^{P} \underline{\underline{\varvec{A}}}^{m m}_{(\nu _{q})_{i}} \prod _{\forall j \ne q} \left[ ( \underline{\varvec{a}} _{\nu _{j}}^{m})^{T} \underline{\underline{\varvec{A}}}^{m m}_{(\nu _{j})_{i}} \underline{\varvec{a}} _{\nu _{j}}^{m} \right] \nonumber \\ \underline{\varvec{f}} _{\nu _{q}}= & {} \sum \limits _{i=1}^{P} f_{\text {res}}( \underline{{\nu }}_{i} ) \underline{\varvec{N}} _{\nu _{q}}^{m}((\nu _{q})_{i}) \prod _{\forall j \ne q} \underline{\varvec{N}} _{\nu _{j}}^{m}((\nu _{j})_{i})^{T} \underline{\varvec{a}} _{\nu _{j}}^{m} \end{aligned}$$
(A17)

with \(f_{\text {res}}(\nu _{1},\nu _{2}, ... \ , \nu _{n}) = f(\nu _{1},\nu _{2}, ... \ , \nu _{n}) - u_{m-1}(\nu _{1},\nu _{2},\) \(... \ , \nu _{n})\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, S., Monteiro, E., Mechbal, N. et al. Hybrid twin of RTM process at the scarce data limit. Int J Mater Form 16, 40 (2023). https://doi.org/10.1007/s12289-023-01747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-023-01747-2

Keywords

Navigation